QC - EQA Equalization + Alignment S33

Module of the KLIPPEL ANALYZER SYSTEM (QC Version 6, dB-Lab 210)

Document Revision 2.4

FEATURES

- Aligns frequency response or sensitivity automatically
- Determines equalization curve
- Sweep or single tone mode
- Automatic or manual mode
- Adjust sound pressure, voltage or displacement

BENEFITS

- Achieve custom frequency response
- Ensure consistent excitation
- Adjust sensitivity of DUT
- Assist manual adjustment
- Optimal EQ filter setting

The QC Equalization + Alignment is a versatile tool for adjusting the level or frequency response of transducers, audio systems or electronics.

Stimulus shaping is applied to automatically achieve a user defined target response. The resulting level profile may be used for applications like microphone testing with equalized sound sources.

In manual mode, the operator is assisted in adjusting controls like gain or EQ filters with minimal time and learning effort.

Applications

- Quality control of microphones and headsets (sound source equalization)
- Amplifier compensation
- Factory setting of active systems (sensitivity, EQ ..)

Article Number	1234-245
----------------	----------

CONTENT

1	General Information	2
2	Requirements	3
3	Settings	4
4	Parameter, Limits and Results	5
5	Examples	6

1 General Information

1.1 Summary									
	The EQA was designed as a flexible and simple tool for tuning the frequency response and level of audio devices. Both, single tone and sweep stimulus signals are provided for this purpose. The actual alignment may be performed automatically using stimulus level (profile) or manually by adjusting external controls. In both cases the measurement is repeated until								
	the desired target response is achieved within the specified accuracy limits.								
1.2 Principle									
Automatic Mode (Equalization)	 Frequency Response (Sweep) Perform first measurement at safe level Calculate difference curve between response and target response Invert difference curve to derive equalization level profile Measurement is repeated applying the determined profile The deviation between resulting response and target response is calculated The EQ curve is refined in further loops, if required 								
	Target frequency response Level profile								
	Level (Single Tone) • Perform first measurement at safe level								
	 Calculate difference to target level 								
	Adjust stimulus level								
Manual Mode (Alignment)	 Repeat until target level is achieved within tolerance Measurement is repeated automatically External control parameters are adjusted by the operator while the measurement is looped Measured response is checked against the target response (within defined tolerance) As soon as the target response is achieved, the measurement is stopped 								
Assisted Mode ⁵⁾	 As soon as the target response is achieved, the measurement is stopped During initialization stage the general characteristic of the device controls (e.g. equalizer) regarding the magnitude response are determined by an algorithm The control characteristics is applied to other similar units (product line) In every measurement loop the operator is instructed to set a certain control to a certain position This iterative process is carried on until all controls are set optimally within the accuracy limits 								

1.3	Limitations	
	•	 Physical limits of the system under test determine the achievable frequency range and level - maximal input voltage is specified to protect the device Forcing a system to reproduce high levels out of specified target bandwidth may cause significant distortion and damage
	•	Equalizing the acoustic response at high frequencies requires exact positioning of the reference microphone
	•	Accuracy of equalization is defined by the frequency response of the used reference microphone
	•	Applying a very steep correction curve (voltage profile) may cause significant harmonic distortion – mind narrow band resonances and acoustical cancelations

2 **Requirements**

2.1 Hardware

The EQA may be used for a variety of different applications. Therefore, the minimal hardware requirements depend on the particular application. For aligning an acoustic system, the following minimal requirements apply.

3 Settings

Several selected setup parameters of the EQA task are listed in this section. Further parameters are listed in section *Setup Parameters*.

3.1 Configuration

Maximal Loops	This parameter defines the maximal number of iterations allowed to achieve target re- sponse until the measurement is aborted.
Matched Loops	As soon as the target response is achieved, this parameter defines the number of addi- tional measurement loops to refine and verify the results. Especially in <i>Manual</i> mode this ensures a stable final state of the device controls.
Export Params ⁴⁾	In <i>Automatic</i> mode the resulting equalization settings may be exported to a plain ASCII text file. Two options are provided
	 Voltage (Profile) – export level profile (EQ curve) and corresponding voltage all – export all stimulus and processing settings The resulting parameter file (*.klpar) may be used to apply equalization settings to the QC Standard Sound Pressure which is capable of automatic import. Also reimport into EQA is possible to apply sensible start settings to speed up equalization
Import Settings	Settings import is closely related to parameter export. The settings file generated by export

3.2 Stimulus

Max. Voltage (rms) ⁴⁾	This value defines the maximal stimulus RMS voltage (signal or amplifier output) that may be applied to during equalization process. In <i>Log Sweep</i> mode, the resulting level profile is defined relative to this voltage (attenuation vs. frequency).
Initial attenuation ⁴⁾	Stimulus voltage attenuation (relative to Max. Voltage) applied during first run.

3.3 Processing

Filter Fundamen- tal ¹⁾	Specify here whether the measured frequency response is filtered (fundamental only) or if full signal (incl. noise and distortion) is used.
	This setting is relevant if the results shall be used for the <i>Sound Pressure</i> task depending on setup parameters.
3.4 Limits	
Add task result	The EQA is not a dedicated test task but an auxiliary measurement module. Thus, it does not support regular testing limits; all tolerances are defined within the regular setup parameters. However, the equalization verdict may be propagated as a general test results which is interpreted by the <i>Control:Finish</i> task and thus contributing to the test verdict list.

4 Parameter, Limits and Results

4.1 Setup Parameters

Parameter	Symbol	Min	Тур	Max	Unit			
CONFIGURATION	·							
Task Mode	-	•	 Automatic Manual Assisted⁵⁾ 					
Adjusted Parameter	-	•	 Frequency Response Peak Envelope Curve Bottom Envelope Curve Envelope Curve (peak to peak) Total RMS Absolute Peak Overall Peak-to-peak 					
Measured quantity	-	•	Sound pressureDisplacement					
Target response ¹⁾ – target fre- quency response	$ \begin{array}{c} L_{\rm trgt}(f) \mbox{ or } \widetilde{\mathcal{U}}_{\rm rms, trgt}(f) / \\ \widetilde{p}_{\rm trgt}(f) / \ \widetilde{x}_{\rm trgt}(f) \end{array} $				dB or V/Pa/m m			
Tolerance Profile ¹⁾ – relative toler- ance for target response	$\begin{array}{l} \Delta L_{\rm trgt}(f) \mbox{ or } \Delta \widetilde{U}_{\rm trgt}(f) / \\ \Delta \widetilde{p}_{\rm trgt}(f) / \Delta \widetilde{x}_{\rm trgt}(f) \end{array}$				dB or V/Pa/m m			
Target level ²⁾	$L_{ m trgt}$	-	-	-	dB			
Target value ²⁾	$\widetilde{U}_{ m trgt}/\widetilde{p}_{ m trgt}/\widetilde{x}_{ m trgt}$	0	-	-	V/Pa/m m			
Tolerance max ²⁾ – upper target tolerance Tolerance min ²⁾ – lower target tol-	$\begin{array}{c} \Delta L_{\max} \text{ or } \Delta \widetilde{U}_{\max} / \\ \Delta \widetilde{p}_{\max} / \Delta \widetilde{x}_{\max} \end{array}$ $\Delta L_{\min} \text{ or } \Delta \widetilde{U}_{\min} / \Delta \widetilde{p}_{\min} / \end{array}$				dB or V/Pa/m m dB or V/Pa/m			
erance	$\Delta \tilde{x}_{\min}$				m			
Maximal Loops – max. number of test runs for equalization	i _{max}	1 20		-	-			
Matched Loops – number of test runs for verification	$i_{ m match,min}$	1	1 2 -		-			
STIMULUS		-	Single tone					
Stimulus Signal	Single tone Log. sweep							
Start ¹⁷ -Start frequency of sine sweep	$f_{ m start}$	1	-	80200 ⁶⁾	Hz			
Stop ¹⁾ – Stop frequency of sine sweep	$f_{ m stop}$	1	-	80200 ⁶⁾	Hz			
Frequency ²⁾ – Test tone frequency	f _{test}	4	1000	80200 ⁶⁾	Hz			
Time – Measurement time	t and the second	0.2	1	20	S			
Voltage $(rms)^{3j}$ – stimulus voltage	U _{stim}	0	1	200	V			
voltage	$\widetilde{U}_{ ext{stim,max}}$	0	1	200	V			
Initial attenuation ⁴⁾ – attenuation relative to <i>Max Voltage</i> for first run	<i>a</i> ₀	-	-40	0	dB			
PROCESSING								
Resolution – frequency response resolution	R	1	20	200	pts/oct			

RBz Highpass ¹⁾ – high pass order of <i>Rub&Buzz</i> filter	N	ıp,rbz	5	10	100	-	
Input Gain – analog mic input pre- amp gain	$G_{ m p}$	re,mic	-70	0	30	dB	
4.2 Measurement Results							
Measured Quantity		Symbol			Unit		
Frequency Response ¹⁾		L(<i>f</i>)		dB		
Waveform (vs. instantaneous sweep fre- guency) ¹⁾⁷⁾		U(f)/p(f)/x(f)			V/Pa/mm		
Waveform Envelope ¹⁾⁷⁾		$U_{\rm env}(f)/p_{\rm env}(f)/x_{\rm env}(f)$			V/Pa/mm		
Dynamic DC Component ¹⁾⁷⁾		$U_{\rm DC}(f)/p_{\rm DC}(f)/x_{\rm DC}(f)$			V/Pa/mm		
Single Tone Response Level ²⁾		L			dB		
RMS		$\widetilde{U}/\widetilde{p}/\widetilde{x}$			V/Pa/mm		
Peak (abs.)		$\left \widehat{U}\right / \hat{p} / \hat{x} $			V/Pa/mm		
Peak-to-Peak		$U_{ m pp}/p_{ m pp}/x_{ m pp}$			V/Pa/mm		
Mismatch		$\Delta L^{2)}$ or $\Delta L(f)^{1)}$			dB		
Voltage ²⁾ (applied single tone RMS voltage)		${\widetilde U}_{ m stim}$			V		
Rub&Buzz ¹⁾		$L_{\rm Rbz}(f)$			dB		
Total Harmonic Distortion ¹⁾		THD(f)			dB or %		
Level Profile ¹⁾⁴⁾ (attenuation curve for equal- ization)		$a_{\rm EQ}(f)$			dB		
DC Voltage Profile ¹⁾⁸⁾		$U_{\rm DC}(f)$			V		
Parameter file ⁴⁾ (Level profile and related stimulus settings)		-			-		

5 Examples

S33

S33

LEGEND

- ¹⁾ Only available for *Stimulus Log Sweep*
- ²⁾ Only available for *Stimulus Single Tone*
- ³⁾ Only available for *Task Mode Manual*
- ⁴⁾ Only available for *Task Mode Automatic*
- ⁵⁾ This feature is not released yet.
- ⁶⁾ Depends on selected sample rate
- ⁷⁾ Requires *KLIPPEL Analyzer 3* or *Production Analyzer* with DC modification
- ⁸⁾ Requires DCX (Dynamic DC Check) add-on and KLIPPEL Analyzer 3 with Amplifier Card or QC Card

Find explanations for symbols at: http://www.klippel.de/know-how/literature.html Last updated: February 04, 2020

