MSPM Pro Micro Suspension Part Measurement

Module of the KLIPPEL ANALYZER SYSTEM (Document Revision 1.6)

FEATURES

- Measurement of nonlinear stiffness K(x)
- Small diaphragms (diameter < 7 cm)
- Measurement of bare membranes without attaching a voice coil
- Suspension Parts of: micro-speakers, headphones, tweeters, microphones

BENEFITS

- Automatic measurement
- Nondestructive, dynamic method
- Specification of suspension parts
- Optimal driver design in R&D

C11

DESCRIPTION

The *MSPM Pro Micro Suspension Part Measurement* software module and hardware accessory for the KLIPPEL R&D System is designed for the measurement of the large signal stiffness of small suspension parts (micro-speakers, headphones, tweeters, microphones).

The membrane is excited passively by the sound pressure in a small pressure chamber. The nonlinear behavior of the stiffness is measured by monitoring the distortion in the displacement of the membrane.

Article number	#2500_602
ALICIE HUITIDEI	#2500-002

CONTENT

1	Overview	. 2
2	Requirements	. 3
3	Limitations	. 4
4	Outputs	. 4
5	References	. 5

(11)

1 Overview

2 Requirements

2.1 Hardware			
MSPM Bench (Art. #2500-601)	MSPM Bench comprises a small pressure chamber with a flexible clamping mechanism for micro suspen- sion parts.		
Analyzer	The Klippel Analyzer 3 or the Distortion Analyzer are used as hardware to control the laser head and to perform the measurement.		
Laser Stand	 The MSPM Bench is designed to work with one of the following laser positioning devices 3D Scanner (Scanning Vibrometer System SCN) (Art. #:2510-004) LST Bench (Art. #: 2500-310) + Translation Stage (Art. #:2300-001) Pro Driver Stand (Art. #:2211-100) + Translation Stage (Art. #:2300-001) 		
Laser Displacement sensor	 A high precision laser displacement sensor is required. It is recommended to use: Keyence LK-H052 Laser sensor (Art. #:2103-200) 		
Microphone	 A 1/4" microphone is required for sound pressure measurement in the pressure chamber. Recommended Product: MIC 40PP-S1 (Art. #:2400-007) 		
Amplifier	A power amplifier is required for performing the measurement.		
Computer	A personal computer is required for performing the measurement.		
2.2 Software			

dB-Lab (>=210.128)	Project Management Software of the KLIPPEL R&D SYSTEM.	
LPM-Module	Software Module for multitone measurements with the KLIPPEL Analyzer devices.	
MSPM Lite [optional]	It is recommended to first determine the linear mechanical parameters using the <i>MSPM Lite Micro Suspension Part Measurement</i> module.	

3 Limitations

3.1 Device Under Test				
Parameter	Min	Тур	Max	Unit
Dimension DUT Dimensions can be found in A12 MSPM Bench				
Resonance frequency	100		2500	Hz
Cone Breakup Frequency ¹	600			Hz
3.2 Sensors				
Laser Laser limitations can be found in A2 Laser Displacement		ment Sensor		
Microphone Microphone limits can be found in A4 Microphones		5		

4 Outputs

4.1 Result Curves

K(x) over	The window shows the identified nonlinear stiffness $K(x)$ of the suspension part.	
Displacement		
Fitting Error in	Diagnostic window; shows the forces F in frequency domain. You can use this plot to	
Frequency Domain	check for a good fitting of both linear and nonlinear parameters.	
Transfer Function	Diagnostic window; shows the transfer function X/F of the DUT.	
DUT X/F		
Transfer function	Diagnostic window; shows the transfer function F/I of the Setup.	
Measurement		
Setup F/I		

4.2 Result Parameters

	1	
Parameter	Unit	Description
k 1 k 4	N/mm	Coefficients describing the nonlinear stiffness
K (x=0)	N/mm	Mechanical stiffness at rest position
R	kg/s	Mechanical resistance
m	g	Moving mass
Elin	%	Linear error in force relative to stimulus signal F _{Stim}
Model Perfor-	dÞ	Performance of the nonlinear model
mance	UD	
dκ	%	Ratio of the distortion in measured displacement
Esetup	%	Error in measured transfer function

¹ Negligible partial vibrations below the stated frequency

5 MSPM Bench Specification

5.1 Specification for 1.0 and above			
5.1.1 Maximum/Minimum Ratings	Min	Max	Unit
Driver Nominal Impedance	8		Ω
Input Voltage (continuous, <40s)		12	V
Input Voltage (short term, <5s)		19	V
Driver used: 18 Sound 6ND410			

6 References

6.1	Related Modules	MSPM Lite, SPM Pro, SPM Lite
6.2	Manuals	MSPM Manual

Find explanations for symbols at: <u>http://www.klippel.de/know-how/literature.html</u> Last updated: April 29, 2021 Designs and specifications are subject to change without notice due to modifications or improvements.

