Material Parameter Measurement (MPM)

Software Module and Accessory of the KLIPPEL ANALYZER SYSTEM (Document Revision 1.5)

FEATURES

- Measure E modulus and damping
- Evaluate raw materials
- Specify loudspeaker parts more precisely
- Provide input data for FEA
- Find optimal materials
- Maintain consistent products

The material parameter measurement module (MPM) measures the Young's E modulus and the loss factor η of the raw material used for loudspeaker design. The vibration beam technique (ASTM E 756-93) is modified to be capable for measuring also soft materials such as thin foils of plastic, rubber and any kind of paper and impregnated fabric. After cutting 1 cm strips the probes are clamped on one side and excited pneumatically by using the suspension part measurement bench.

Article Number:

2500-200, 2500-210

CONTENTS:

1	Components of MPM Set	. 2
2	Additional Components required	. 2
3	Objects of the Measurement	. 4
4	Measurement Procedure	. 4
5	Measurement Principle	. 5
6	Results	. 5
7	Limits	6

C4

1 Components of MPM Set

MPM Clamping Set	A special clamping set is provided to clamp the samples with a defined beam length. The Clamping Set comprises a round platform (1) with a rectangular opening, an upper clamping beam (3) fastened by two screws (4) at the platform and an adjustment tool (2). The adjustment tool (2) has got 5 slots of different length. After inserting the adjustment tool into the platform (see right picture) the sample will be inserted into the slot and clamped by fastening the two screws. After removing the adjustment tool and placing the platform in the SPM measurement box the sample is excited pneumatically to the first bending mode.	MPM clamping system
Material Parameter Software (<i>MPM</i> <i>Automation</i>)	A visual basic application is provided which allows to perform the measurements with a minimum user interface dedicated to this special measurement. The user provides the input parameter (length, density, thickness) and determines where the measurement results should be saved	MPM Material Parameter Measurement 1.3 Folds © Vestiven 13 Folds © Vestiven 13 Upper Gat Upper Upper

2 Additional Components required

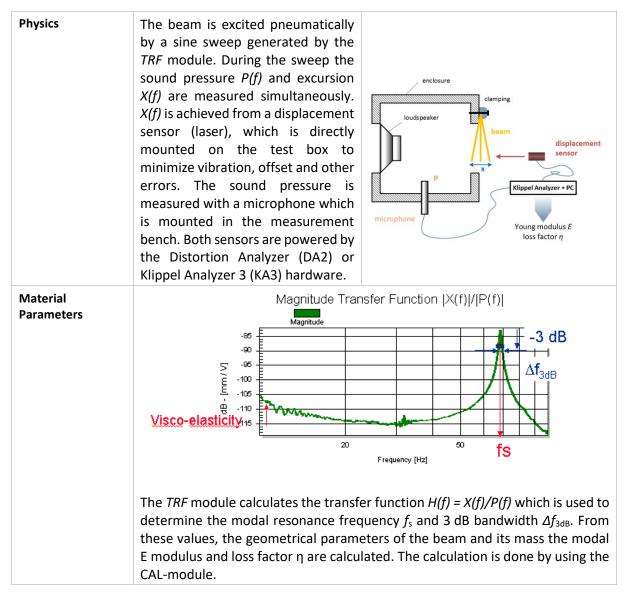
SPM Measurement Box	The MPM measurement can be realized cost effectively as an add-
Or	on of the suspension part measurement SPM. After removing
LST Bench	the clamping part used for spiders and surrounds the remaining
	measurement box holds the MPM clamping platform. An adjustable laser guide holds the displacement laser sensor and a hole in the box is provided to measure the sound pressure inside the box. The clamping platform can easily put up in a horizontal position for charging but is used in a vertical position during measurement. The set consists of the cable for connecting

Material Parameter Measurement (MPM) required

	the measurement bench to Klippel Distortion Analyzer.					
Measurement Platform	The Distortion Analyzer 1 or 2, or the Klippel Analyzer 3 may be used as the hardware to control the laser head and to perform the measurement. Note: If you are using a Klippel Analyzer 3, an additional license dongle will be provided.					
Sensor	 A displacement laser sensor is required to measure the displacement of the material samples at the required precision. For MPM standalone operation the Keyence IL-030 or IL-65 is recommend. The Keyence LK-H52 sensor that is usually used with the KLIPPEL R&D System could be used as well. The older Keyence LK-G32 sensor also, but with displacement limitations. The ANR 1282 sensor is not recommended due to its higher noise level. 					
Additional Software	 The MPM uses the following software Transfer Function Module (The dB-Lab 	e modules of the KLIPPEL R&D System RF)				
Amplifier	A power amplifier is required for pershould provide more than 50 W outp	rforming the measurement. The amplifier ut power on 4 Ohm.				
Microphone	A quarter inch microphone is required for performing the measurement. The G.R.A.S. 40PP-S1 is the default microphone for MPM application. This cost efficient microphone with a sensitivity of 10 mV/Pa can be connected directly to the IEPE powered MIC inputs of the <i>Analyzer Devices</i> . (Alternative Option G.R.A.S. 40PP)					
Computer	A personal computer (not available a measurement.	at KLIPPEL) is required for performing the				

3 Objects of the Measurement

Material	This measurement technique may be applied to almost any material used in loudspeakers such as paper, rubber, plastic, fabric, metals and any compound materials. It is recommended to use samples cut from a plain sheet, plate or foil. Samples
	taken from spherical cones or surround roles are problematic because the curvature in the beam makes the beam stiffer causing higher values of the measured E modulus. Paper, plastics, metals or impregnated fabric which has been bended before aboutd not be used at all
	should not be used at all. Many materials such as fabric are not isotropic that means the measured material properties depend on the direction of the cut. To verify the measured parameter values it is recommended to repeat the measurement with a different batch of the material, cut the samples in different direction and clamp the sample at a different beam length.


4 Measurement Procedure

Cutting the Samples	The samples should be cut in small stripes 1 cm wide and 8 cm long by using a knife or a pair of scissors. It is important to have a constant width along the beam which can be ensured by using a plate shear.
Measuring Density and Thickness	Measure with a high-precision scale the weight of the sample and determine the thickness of the sample. Calculate the density.
Clamping	 Insert the adjustment tool Insert the sample into the slot giving the desired length of the beam Fix the upper clamping beam Remove the adjustment tool Adjust the laser displacement sensor to the free end of the beam
Start the Measurement	 Start the visual basic application MPM Start.exe Enter the geometrical data, density and the name of the sample Press the start button

5 Measurement Principle

C4

5 Measurement Principle

6 Results

E Modulus Loss Factor η	This measurement provides the <i>E</i> modulus and the loss factor η dynamically measured. It is recommended to present those measurement data together with the excitation frequency (identical with the	1 د.ه ۱۰۵ لمحدم ۱۰۵ ل	rubber fabric plastics paper metal
	resonance frequency of the first bending mode) and information about the ambient temperature and humidity.		10 ⁰ 10 ¹ 10 ² 10 ³ 10 ⁴ 10 ⁵ Young's Modulus <i>E</i> [MPa]

(4

Summary of summary total.txt										
Measurement		A	В	С	D	E	F	G	Н	I
Data	1									
Data	2	DUT	rho	d	1	E	n	Q	fs	xpeak
	3		kg/m^3	mm	mm	MPa		dB	Hz	mm
	4	38#B sample		50	0.5		0.035128	29.086914		0.229049
	5	38#B sample		50	0.5		0.036335	28.793513		0.203297
	6	026# sample	591	50	0.5		0.032399	29.789446		0.222055
	7	026# sample	595	50	0.5		0.031502	30.033329		
		007# sample	623	50	0.5		0.032337	29.805969		
		007# sample	624	50	0.5		0.035298	29.044985		
		007#a sample		50	0.5	2542.08649	0.027661	31.16251	67.840576	
	11	007#a sample		50	0.5		0.031422	30.055455		0.223894
	12	007#b sample		50	0.5		0.031789	29.954459		0.22671
	13	007#b sample	589	50	0.5	3390.47237	0.039875	27.98604	77.545166	0.215726
	14									
	The most important results are usually stored in a txt file called summary.txt located in the folder where all the results of one measurement series are collected. This file can be viewed by a simple txt editor or exported to any table oriented post processing software (e.g. Excel [®]).									
			•		•	-	•	•		calculated
	tra	nsfer re	sponse a	are store	d in a d	atabase	which c	an be vi	ewed by	' dB-Lab. A
	transfer response are stored in a database which can be viewed by <i>dB-Lab</i> . A detailed analysis may be useful to setup the system, check the SNR of the signals and to cope with a malfunction of the system.									

7 Limits

Parameter	Symbol	Min	Тур	Max	Unit
Young's E modulus	Ε	0			MPa
Loss Factor	η	0.0001	0.1	1	
Q Factor (related to Loss Factor)	Q	80	20	0	dB
Resonance Frequency	<i>f</i> s	20		200	Hz
Density	ρ	0	100		kg/m ³
Thickness	D	0.05	0.5		mm
Minimal Voltage of the Stimulus	U_{\min}	0.0001	0.01		V
Maximal Voltage of the Stimulus	U _{max}		2	50	V
Target Displacement	X_{target}	0.01	0.2	2	mm
Length of the Beam	L	15		50	mm

Find explanations for symbols at: http://www.klippel.de/know-how/literature.html Last updated: April 07, 2020

