Module of the KLIPPEL ANALYZER SYSTEM (Document Revision 1.5)

PRELIMINARY SPECIFICATION

This specification is preliminary and is subject to change.

FEATURES

- Linear signal modeling from digital input to acoustical output.
- Lumped network parameters for passive components
- Automatic equalization (DSP)
- Small signal performance for any audio input (music, test signal)
- Efficiency and voltage sensitivity versus frequency and broadband signals

BENEFITS

- Small signal performance in target application
- Considers digital, electrical, mechanical, acoustical components
- Minimum set of essential parameters
- Fast calculation of frequency responses
- Filter parameters for optimal system alignment
- Basis for large signal modeling (SIM)

DESCRIPTION

The *LSIM Linear Simulation* describes an active loudspeaker or headphone driver by using a linear lumped parameter model. Main components are equalizer, amplifier, transducer and enclosure. Using any selected input spectrum (e.g. music), meaningful statistical single values (e.g. mean efficiency) and various state spectra (e.g. SPL) are calculated. This is a useful base for defining transducer and amplifier requirements and providing significant information about the audio performance. Various transfer functions reveal the relationship between digital, electrical, mechanical and acoustical signals.

The *LSIM* features an easy-to-use simulation software with lumped or geometrical input parameters for initial (small signal) design, which is the basis for the large signal simulation in other Klippel software modules (*SIM Simulation*, *SIM-AUR Auralization*).

Article number	1000-300

CONTENT

1	Overview	2
2	Example	7
3	Requirements	11
4	Parameter	12
5	References	15

1 Overview

1.1 Principle

Basic

Principle

The LSIM Linear Simulation module illustrates a simplified linear active loudspeaker containing a band pass filter section for simulating a crossover, a prefilter (Equalization) specified by the transfer function $H_{equ}(f)$, an amplifier with an output resistance of R_g and an electrodynamical transducer mounted in an enclosure. The optimal equalizer transfer function $H_{equ}(f)$ for system alignment will be calculated automatically for a specified target transfer behaviour.

Signal based system design is possible by defining a relative input spectrum $G_w(f)$. Pink noise, typical program material according to *IEC 60268-21* and an option for individual external stimulus are provided. All spectra are converted into third octave spaced spectra. Based on this, state variables like U_g (amplifier output voltage without load) or U_T (terminal voltage) and further characteristics like SPL_{max} can be predicted. Entering a crest factor provides the option to estimate peak values.

S58

Lumped Parameter Model	<i>u</i> _g —	$H_{\nu}(f) \rightarrow v$	H _a ((f)	$q_a \frac{H_{rad}}{d}$	$(f) \rightarrow p(\mathbf{r})$
	$ \begin{array}{c} i\\ R_{G}\\ u\\ u_{g}\\ \end{array} $	A_M F_L	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$		q_a Z_{AL} –	$\rightarrow P_a$
	amplifier	motor, exciter	diaphragm	enclosure, passive radiator	air Ioad	sound field
	The ISIM Linear Simulation	exciter		radiator	load	TIEIO

The LSIM Linear Simulation module uses a lumped-parameter model of an electro-dynamical transducer mounted in common enclosures. This model is based on chain matrices describing the different parts of the loudspeaker. A_M describes the motor and mechanical behavior of the exciter, the diaphragm A_D , the enclosure A_A and passive acoustical elements like port or passive radiator. Employing this knowledge, total sound pressure level SPL(f), state variables (e.g. V_c), transfer functions such as $H_x(f)$ or the electrical impedance $Z_{el}(f)$, as well as efficiency $\eta(f)$ and voltage sensitivity can be easily simulated.

Note that the *LSIM* module only simulates the linear behavior of the system, which is considered valid at small amplitudes. Please see *SIM Simulation* or *SIM-AUR Simulation / Auralization* for nonlinear modeling.

1.2 Input

Input	The LSIM input is structured into 4 categories:
Parameters	 Transducer: Linear transducer parameters (free air)
	 Enclosure: Type Geometrical properties or lumped parameters
	 Equalization: High pass filter alignment User defined transfer behavior
	 Stimulus: Pink noise Typical program material according to IEC 60268-21 User defined spectrum (e.g. music)
	The <i>LSIM</i> supports the following enclosure types:

S58 1 Overview Linear Simulation (LSIM) $V_{\rm b}$ $V_{\rm b}$ $V_{\rm b}$ $S_{\rm d}$ $S_{\rm d}$ S_{d} $S_{\rm d}$ ► $S_{\rm d}$ ŧ. ₿ Sp ₿ Sp $S_{\rm r}$ $l_{\rm p}$ l_{p} V_{i} **Passive Radiator** Bandpass System Baffle **Closed Box** Vented Box Box

1.3 Results

Linear Transfer Functions	The magnitude and phase frequency responses are calculated between the following state variables • Sound pressure level $L_p(f, r)$ in far field • Displacement (voice coil, passive radiator) • Velocities (voice coil, passive radiator) • Forces in the mechanical system • Volume velocities in the acoustical system in relation to the terminal voltage U_T . The electrical input impedance $Z_e(f)$ is also presented.
Reference Sensitivity	 Voltage sensitivity L(f, r) versus frequency of a sinusoidal stimulus referenced to u_{ref} = 1 V and r_{ref} = 1m. Reference voltage sensitivity L_r for the given broadband stimulus in accordance to IEC 60268-22.
Efficiency	 Efficiency η(f) versus frequency of a sinusoidal stimulus. Reference efficiency η_r for given broadband stimulus in accordance to IEC 60268-22.
Spectra based on Stimulus	 For a given broadband stimulus spectrum, the following 1/3rd octave spectra are available: Stimulus (with no filter, band-pass filtered, or band-pass and equalized) Internal state variables (e.g. Displacement for given stimulus) Power (electrical input, acoustical output)

KLIPPEL Analyzer System

•

 $L_{\rm R}$

Mean efficiency

S58

Linear	Simu	lation	(LSIM)	
			/	

•	Pe	Total electrical transducer input power
•	Pa	Total acoustical output power

2 Example

2.1 Simulat	tion of a vented box system
Targets	 The target of this example is to show a typical workflow on how to use the LSIM for active loudspeaker design. The task for this example is, to use the LSIM for designing a closed box loudspeaker. Therefor the following targets are defined: The desired SPL output is 95 dB. The peak displacement for typical music stimuli should be below x_{max} = 3.5 mm. Due to the targets, the following critical single values should be determined for using typical music signals: Power and voltage consumption (required for selecting an optimal fitting amplifier) Efficiency and voltage-sensitivity Peak displacement
User Input	 Linear Transducer Parameters: For this example, data of a small midrange speaker was imported from an LPM operation. Immediately after entering all data, the window <i>Table Transducer Parameters</i> shows all loudspeaker parameters. Additional to the entered data some parameters like <i>Cmess</i>, <i>fs</i> and the passband-efficiency of the transducer in free air are calculated and shown. USISM constrained to the sample of the transducer in <i>Constrained Constrained Con</i>

Linear Simulation (LSIM)

	Faualization			$\overrightarrow{q_a}$	$q_c = q_1$		Vb		
	Target Response	HP-Filter Alignment		· •	T T				
l F	Eilter Tune	Ath order Ruttenworth			ļĻ			_/	
Ιŀ	for the second s	140			.¥≶	i i		S_{d}	
l F	Commente la durta	140		Pbox					
	Compensate Inductan	ce 🛛		¥	1 1				
÷	Amplifier								
	Enclosure	1			-				
I F	System Type	Closed Box		Symbol Geometrica	Value U I Parameters of Ac	nit Com oustical Syste	ment em		
	Vb	1		Vb	1.00 l	Volun	ne of air in end	losure	
11	Ral	10000		Acoustical F	Parameters Derive	d from Geome	stry		
÷	Cone, Radiation, Roor	n		C _{ab}	7.13 m	nm ³ /Pa Acous	stical compliant acoustical com	e of air in enclosu pliance of transdu	re cer and enclosure
H				a	1.70	Syste	m compliance i	ratio = $a = K_{mb} / I$	Kms
Equ	alization			Ratc	188.83 k	Ns/m ^s Total	acoustical resis	stance of transduc	er and enclosure
				Mechanical	Parameters Derive	d from Geom	etry	of sis is and some	
	Paste Clear			Kmt	6.74 N	/mm Total	mechanical still	fness of transduce	er and enclosure
				Derived Par	rameters				
				f _c	168.72 H	z Resor	nance frequenc	y of closed box sy	stem
		ОК Нер	Cluse	V E		6 100		x system (consid-	cring system load
	glectable. At limitation is are entered f	ove 5 kHz nonlinear e entered in section Filte for Target SPL.	effects o er. As tai	rget pe	membra erforman	ne wil ce the	ll beco previ	ome dor ously do	minant. esired 9
	glectable. At limitation is are entered f The window the stimulus enced_After	bove 5 kHz nonlinear of entered in section <i>Filte</i> for <i>Target SPL</i> . stimulus spectrum imr spectrum. All spectra i	effects o er. As tai mediately in this wi	y after ndow	membra erforman defining are relat	ne wil ce the the st ive and	II beco previ imulus d not r	ome dor ously do s param normaliz	ninant. esired 9 eters sł zed or r
	glectable. At limitation is are entered f The window the stimulus enced. After well.	pove 5 kHz nonlinear e entered in section <i>Filte</i> for <i>Target SPL</i> . stimulus spectrum imr spectrum. All spectra i clicking on <i>run</i> the b	effects o er. As tai mediately in this wi and-pass	y after ndow s filter	membra erforman defining are relat ed and e	ne wil ce the the st ive and equaliz	II beco previ imulus d not r ed sp	ome dor ously do s param normaliz ectrum	minant. esired 9 eters sh zed or r is visib
\15 L	glectable. At limitation is are entered f The window the stimulus enced. After well.	Tutorial Example	effects o er. As tar mediately in this wi and-pass	y after ndow s filter	membra erforman defining are relat ed and e Stir	ne wil ce the the st ive and equaliz nulus	II beco previ imulus d not r ed sp Specti	ome dor ously do s param normaliz ectrum	minant. esired 9 eters sh zed or r is visib
\15 L	glectable. At limitation is a are entered f The window the stimulus enced. After well.	bove 5 kHz nonlinear e entered in section <i>Filte</i> for <i>Target SPL</i> . stimulus spectrum imr spectrum. All spectra i clicking on <i>run</i> the b Tutorial Example	effects o er. As tar mediately in this wi and-pass	y after ndow	membra erforman defining are relat ed and e Stir Re	ne wil ce the the st ive and equaliz nulus lative Inp	II becc previ imulus d not r ed spe Specti ut Spectr	ome dor ously do s param normaliz ectrum rum	minant. esired 9 eters sh zed or r is visib
\15 L'	glectable. At limitation is a are entered f The window the stimulus enced. After well.	oove 5 kHz nonlinear e entered in section <i>Filte</i> for <i>Target SPL</i> . stimulus spectrum imr spectrum. All spectra i clicking on <i>run</i> the b Tutorial Example	refects o er. As tai mediately in this wi and-pass	y after ndow	membra erforman defining are relat ed and e Stir Re Stimul	ne wil ce the the st ive and equaliz nulus lative Inp us	II becc previ imulus d not r red sp Specti ut Spectr	ome dor ously do s param normaliz ectrum rum	ninant. esired 9 eters sł zed or r is visib
\15 L' Info	glectable. At limitation is are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus	bove 5 kHz nonlinear e entered in section <i>Filte</i> for <i>Target SPL</i> . stimulus spectrum imr spectrum. All spectra i clicking on <i>run</i> the b Tutorial Example	refects o er. As tai mediately in this wi and-pass	y after ndow filter	membra erforman defining are relat ed and e Stir Re Stimul	ne wil ce the the st ive and equaliz nulus lative Inp us	II becc previ imulus d not r red sp Spectr	ome dor ously do s param normaliz ectrum rum	ninant. esired 9 eters sł zed or r is visib
\15L' Info	glectable. At limitation is are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal	bove 5 kHz nonlinear e entered in section <i>Filte</i> for <i>Target SPL</i> . stimulus spectrum imr spectrum. All spectra i clicking on <i>run</i> the b Tutorial Example Stimulus Display Im/Export	refects o er. As tai mediately in this wi band-pass	y after ndow filter	membra erforman defining are relat ed and e Stir Re Stimul	ne wil ce the the st ive and equaliz nulus lative Inp us	II becc previ imulus d not r red sp Spectr ut Spectr	ome dor ously do s param normaliz ectrum rum um	ninant. esired 9 eters sł zed or r is visib
\15 L' Info	glectable. At limitation is are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF	Strike to Strik	effects o er. As tai mediately in this wi band-pass	y after ndow s filter	membra erforman defining are relat ed and e Stir Re Stiru	ne wil ce the the st ive and equaliz nulus lative Inp us	II becc previ imulus d not r red spo Spectr ut Spectr	ome dor ously do s param normaliz ectrum cum	ninant. esired 9 eters sł zed or r is visib
\15 L'	glectable. At limitation is of are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF • Delta CF	Strike to Strik	effects o er. As tai mediately in this wi band-pass	y after ndow s filter	membra erforman defining are relat ed and e Stir Re Stimu	ne wil ce the the st ive and equaliz nulus lative Inp us	Il beco previ imulus d not r ced spo Spectr ut Spectr	ome dor ously do s param normaliz ectrum rum	PEL
\15 Li	glectable. At limitation is of are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF • Delta CF Filter	Sove 5 kHz nonlinear e entered in section Filte for Target SPL. stimulus spectrum imr spectrum. All spectra i clicking on run the b Tutorial Example Stimulus Display Typical Program (IEC 60268-21) 12 3	effects o er. As tai mediately in this wi and-pass	y after ndow filter	membra erforman defining are relat ed and e Stir Re Stimu	ne wil ce the the st ive and equaliz nulus lative Inp us	Il beco previ imulus d not r red sp Spectr	ome dor ously do s param normaliz ectrum rum	ninant. esired 9 eters sh zed or r is visib
\15 Ll	glectable. Ak limitation is of are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF Filter High Pass	Sove 5 kHz nonlinear e pove 5 kHz nonlinear e entered in section Filte for Target SPL. stimulus spectrum imr spectrum. All spectra i clicking on run the b Tutorial Example Stimulus Display In/Export Typical Program (IEC 60268-21) 12 3 Sharp Transition	refects o er. As tai mediately in this wi and-pass	y after ndow o filter	membra erforman defining are relat ed and e Stir Re Stimu	ne wil ce the the st ive and equaliz nulus lative Inp us	Il becc previ imulus d not r ed sp Spectu ut Spectr	ome dor ously do s param normali: ectrum rum	ninant. esired 9 eters sł zed or r is visib
\15L	glectable. Ak limitation is are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF • Delta CF Filter High Pass • fc of High Pass	Sharp Transition 50 50 100 100 100 100 100 100 100 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 111 112 113 114 115 115	effects o er. As tai mediately in this wi band-pass	y after ndow filter	membra erforman defining are relat ed and e Stir Re Stimul	ne wil ce the the st ive and equaliz nulus lative Inp us	Il becce e previ timulus d not r red spr Spectr ut Spectr	ome dor ously do s param normaliz ectrum rum	eters sł zed or r is visib
\15 Ll	glectable. At limitation is of are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF • Delta CF Filter High Pass • fc of High Pass Low Pass	Sove 5 kHz nonlinear of entered in section Filte For Target SPL. stimulus spectrum imr spectrum. All spectra i clicking on run the b Tutorial Example Stimulus Display Im/Export Typical Program (IEC 60268-21) 12 3 Sharp Transition 50 Sharp Transition	mediately in this wi band-pass	y after ndow s filter	membra erforman defining are relat ed and e Stir Re Stimul	ne wil ce the the st ive and equaliz nulus lative Inp us	Il becce e previ imulus d not r ed spe Spectr ut Spectr	ome dor ously do s param normaliz ectrum 	ninant. esired 9 eters sł zed or r is visib
\15 Ll	glectable. At limitation is of are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF • Delta CF Filter High Pass • fc of High Pass • fc of Low Pass	Sove 5 kHz nonlinear e pove 5 kHz nonlinear e entered in section Filte for Target SPL. stimulus spectrum imr spectrum. All spectra i clicking on run the b Tutorial Example Stimulus Display Im/Export Typical Program (IEC 60268-21) 12 3 Sharp Transition 500	effects o er. As tai mediately in this wi and-pass	o o -1 -2	membra erforman defining are relat ed and e Stir Re Stimul	ne wil ce the the st ive and equaliz nulus lative Inp us	Il becce e previ imulus d not r ed spe Spectr ut Spectr	ome dor ously do s param normaliz ectrum rum	ninant. esired 9 eters sł zed or r is visib
\15 LL	glectable. Ak limitation is of are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF • Delta CF Filter High Pass • fc of High Pass • fc of High Pass • fc of How Pass Target Performance	Sove 5 kHz nonlinear e pove 5 kHz nonlinear e entered in section Filte for Target SPL. stimulus spectrum imr spectrum. All spectra i clicking on run the b Tutorial Example Stimulus Display Im/Export 12 3 Sharp Transition 500	effects o er. As tai mediately in this wi and-pass	y after ndow s filter	membra erforman defining are relat ed and e Stir Re Stimul	ne wil ce the the st ive and equaliz nulus lative Inp us	Il becc previ imulus d not r red sp Specti ut Spectr	ome dor ously do s param normaliz ectrum rum	PEL
\15 L	glectable. Ak limitation is of are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF • CF Filter High Pass • fc of High Pass • fc of Low Pass Target Performance Target	Sharp Transition Source S Stimulus Spectrum imr stimulus spectrum imr spectrum. All spectra i clicking on run the b Tutorial Example Stimulus Display In/Export Sharp Transition So Sharp Transition Stoop Spect	mediately in this wi and-pass	y after ndow s filter	membra erforman defining are relat ed and e Stir Re Stimu	ne wil ce the the st ive and equaliz nulus lative Inp us	Il becc e previ imulus d not r ed sp Spectu ut Spectr	ome dor ously do s param normali: ectrum rum	PEL
\15 Ll Info	glectable. Ak limitation is are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF • Delta CF Filter High Pass • fc of High Pass • fc of Low Pass Target Performance Target	Sharp Transition 50 Ut	effects o er. As tar mediately in this wi band-pass	y after ndow s filter	membra erforman defining are relat ed and e Stir Re Stimu	ne wil ce the the st ive and equaliz nulus lative Inp us	Il becc e previ timulus d not r red spr Spectr ut Spectr	ome dor ously do s param normaliz ectrum rum	PEL
	glectable. At glectable. At limitation is of are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF • Delta CF Filter High Pass • fc of Low Pass • fc of Low Pass Target SPL	Start Control of the section of the sector of the	effects o er. As tar mediately in this wi band-pass	o -1 -2 -3 -4	membra erforman defining are relat ed and e Stir Re Stimul	ne wil ce the the st ive and equaliz nulus lative Inp us	Il becc e previ imulus d not r ed sp Spectr ut Spectr	ome dor ously do s param normaliz ectrum rum	PEL
	glectable. Ak limitation is of are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF • Delta CF Filter High Pass • fc of High Pass • fc of Low Pass Target Performance Target	Sove 5 kHz nonlinear e pove 5 kHz nonlinear e entered in section Filte for Target SPL. stimulus spectrum imr spectrum. All spectra i clicking on run the b Tutorial Example Stimulus Display Im/Export Typical Program (IEC 60268-21) 12 3 Sharp Transition 500 Image: SPL Ut 95	effects o er. As tai mediately in this wi and-pass	o -1 -2 -3 -4	membra erforman defining are relat ed and e Stimul	ne wil ce the the st ive and equaliz nulus lative Inp us	Il becc e previ imulus d not r ed spe Spectr ut Spectr	ome dor ously do s param normaliz ectrum rum	PEL
\15 LL Info	glectable. Ak limitation is of are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF • Delta CF Filter High Pass • fc of High Pass	Sharp Transition 50 Sharp Transition 50 Sharp Transition 500	effects o er. As tai mediately in this wi and-pass	o after o after o after -1 -2 -3 -3 -4 -4	membra erforman defining are relat ed and e Stir Re Stimul	ne wil ce the the st ive and equaliz nulus lative Inp us	Il becc e previ dimulus d not r ed sp Spectr ut Spectr	rum um Cum um	PEL
\15 LL	glectable. Ak limitation is of are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Transducer System CF Delta CF Filter High Pass •fc of High Pass Low Pass •fc of Low Pass Target Performance Target	Sharp Transition S0 Sharp Transition S0 Sharp Transition S0 Sharp Transition S0 Sharp Transition S00	effects o er. As tai mediately in this wi and-pass	o -1 -2 -3 -4 -5	membra erforman defining are relat ed and e Stir Re Stimu	ne wil ce the the st ive and equaliz mulus lative Inp us	Il becc e previ imulus d not r ed sp Spectu ut Spectr	ome dor ously do s param normali: ectrum rum	PEL
\15 L	glectable. Ak limitation is of are entered f The window the stimulus enced. After well. SIM Demo-Daten\LSIM Transducer System Stimulus Type of Input Signal • CF Filter High Pass • fc of High Pass • fc of Low Pass Target Performance Target SPL mulus Paste Clear	Sharp Transition Sove Sharp Transition Sove Sharp Transition Sove	effects o er. As tai mediately in this wi band-pass	y after ndow s filter	membra erforman defining are relat ed and e Stir Re Stimu	ne wil ce the the st ive and equaliz nulus lative Inp us	Il becce e previ timulus d not r red spo Spectr ut Spectr	ectrum	PEL

Results The single values listed in table State Variables provides most important information considering the simulated music reproduction: For generating 95 dB SPL output using the desired broadband signal, a voltage of 7.85 V 1. (rms) and current of 1.62 A (rms) are required. The resulting reference efficiency is 0.136 % and the reference voltage-sensitivity is 2. 77.1 dB. 3. Due to the specified crest factor, the amplifier has to provide round about 12.43 W with a peak voltage of 31.27 V. 4. For the specified stimulus a peak displacement of 1.85 mm is expected. Those single values are the basis for defining the amplifier and transducer requirements. Checking the limits defined in the task above reveals, that the desired SPL is possible without of crossing the displacement limit of 3.5 mm. Viewing the curves efficiency and voltage sensitivity versus frequency is useful to check out the limitations of the passive loudspeaker system. The efficiency at lower frequencies decreases rapidly, so pushing frequencies below 100 Hz will be inefficient. Pay attention: Efficiency and voltage-sensitivity are not equal. Efficiency shows the ratio between incoming and outgoing power in percent. Voltage-sensitivity shows the SPL-output at 1 m distance, which is accessible for 1 V at the loudspeaker terminal. η(f) Efficiency L(f) Voltage Sensitivity Acoustical Output Power / Electrical Input Power @Re ference Generator Voltage 1 V and Distance 1 m Effciency (Sinusoidal) Se nsitivity (Sinusoidal) Reference Efficiency (Stimulus) Reference Senst vity (Stimulus) KLIPPEL KLIPPEL 80 Sensitivity/ dB (re 1 Pa/V) 75 Efficiency/ % 70 01 65 Voltage 60 50 100 200 500 1k 2k 50 100 200 500 2k 5k 5k 1k Fr equency / Hz Frequency / Hz For detailed investigations it is useful to view transfer-functions and spectra. It is recommended to check if equalization was reasonable adjusted. Therefor the window H(f,r) Sound Pressure and H(f) Equalizer are relevant: H(f,r) Sound Pressure Transfer Function H(f) Equalizer Transfer Function Magnitude an d Phase of H(f) = Pfar (r,f) / Ug(f) Equalizer Transfer Function Loudspeaker Tar get Phase of Equalizer Transfer Function 180 Loudspeaker + EQ KUPPE 80 20 160 70 ⊣(f) Magnitude / dB (re 20 μPa/V) 0 140 ਛੋਂ Alignment / dB nen 60 120 -20 hase 50 100 -40 deg 80 40 -60 60 30 -80 40 20 50 100 200 500 1k 2k 5k 20 50 100 200 500 1k 2k 5k Fr equency / Hz Fr equency / Hz In the left diagram above the sound pressure transfer function of the passive (black) and active loudspeaker including equalization (blue) is visible. Additional to this the target transfer behavior is shown (red). Comparing the black and blue curve shows a reasonable target transfer behavior. This can be approved by viewing the equalizer transfer function (right diagram

> above). The transfer function contains no excessive damping or boosting. For active loudspeakers displacement is a critical issue. High displacement results undesired distortion and is a limiting factor especially for active control. For investigating this, the displacement transfer-function and displacement spectrum are useful.

S58

2 Example

S58

3 Requirements

3.1 Hardware

License Device	Klippel Dongle or Klippel Analyzer 3 may be used to run this product.		
3.2 Software			
dB-Lab (>210.560)	dB-Lab is the project management software of the KLIPPEL R&D SYSTEM.		

4 Parameter

A.1.1 Electro Dynamic Transducer Parameter Symbol Unit Effective radiation surface d_d cm ² Diameter of round effective radiation surface d_d cm Nominal impedance rated by manufacturer Z_n n Electrical voice-coil resistance at DC R_e Q Voice coil inductance L_e mH Electrical inductance due to eddy current losses L_2 mH Electrical inductance due to eddy current losses R_3 Q Electrical inductance due to eddy current losses L_3 mH Factor of real part in WRIGHT model K Q Exponent of real part in WRIGHT model Krm Q Exponent of imaginary part in WRIGHT model Krm Q Exponent of imaginary part in WRIGHT model Krm Q Exponent of imaginary part in WRIGHT model Krm Q Exponent of real part in WRIGHT model Krm Q Exponent of imaginary part in WRIGHT model Krm Q Exponent of imaginary part in WRIGHT model Krm Q Exponent of real part in WRIGHT model Krm	4.1 Input		
Parameter Symbol Unit Effective radiation surface S_d cm ² Diameter of round effective radiation surface d_d cm Nominal impedance rated by manufacturer Z_n Ω Vicie coil inductance R_e Ω Vicie coil inductance due to eddy current losses L_2 mH Electrical inductance due to eddy current losses L_3 mH Electrical inductance due to eddy current losses L_3 mH Electrical inductance due to eddy current losses R_3 Ω Electrical inductance due to eddy current losses R_3 Ω Exponent in LEACH model n Factor of real part in WRIGHT model K_{rm} Ω Exponent of real part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{sm} Ω Effective instantaneous electrodynamic coupling factor (force factor of the mo- R_{sm} R_{sm} Mechanical resistance of driver supension (inverse of compliance Cam) K_{sm} R_{sm} Mechanical tresistance of driver supp	4.1.1 Electro Dynamic Transducer		
Effective radiation surface S_d cm^2 Diameter of round effective radiation surface d_d cm Nominal impedance rated by manufacturer Z_n Ω Electrical voice-coil resistance at DC R_e Ω Voice coil inductance L_e mHElectrical inductance due to eddy current losses L_2 mHElectrical inductance due to eddy current losses L_2 mHElectrical inductance due to eddy current losses L_3 mHElectrical inductance due to eddy current losses L_3 mHElectrical inductance due to eddy current losses R_m Ω Electrical inductance due to eddy current losses R_m Ω Exponent in LEACH model n Factor of real part in WRIGHT model K_m Ω Exponent of real part in WRIGHT model K_m Ω Exponent of imaginary part in WRIGHT model K_m Ω Effective instantaneous electrodynamic coupling factor (force factor of the mo- R_m effective instantaneous electrodynamic scoping factor (force factor of the mo- R_m Mechanical resistance of driver suspension losses R_m kg/s Mechanical resistance of driver suspension losses R_m kg/s Mechanical resistance of driver suspension losses R_m kg/s Mechanical resist of driver in free air, considering R_m only (influences R_m g_s Transducer resonance frequency (influences $Rms and M_m)f_sHz4.12Equalizationf_0Hz$	Parameter	Symbol	Unit
Diameter of round effective radiation surface d_d cmNominal impedance rated by manufacturer Z_n Ω Electrical voice-coil resistance at DC R_e Ω Voice coil inductance L_e mHElectric resistance due to eddy current losses R_2 Ω Electric resistance due to eddy current losses R_3 Ω Electric resistance due to eddy current losses R_3 Ω Electric resistance due to eddy current losses R_3 Ω Electric resistance due to eddy current losses L_3 mHFactor in LEACH model n $$ Factor of real part in WRIGHT model K_{rm} Ω Exponent of real part in WRIGHT model E_{rm} $$ Factor of imaginary part in WRIGHT model E_{xm} $$ Exponent of imaginary part in WRIGHT model E_{xm} $$ Effective instantaneous electrodynamic coupling factor (force factor of the mo- tor) defined by the integral of the magnetic flux density B over the voice coil length 1 Bl N/A Mechanical resistance of driver suspension (inverse of compliance C_{m}) K_{ms} N/mm Mechanical astiffness of driver suspension losses R_{ms} kg/s Mechanical mass of driver diaphragm assembly including voice coil and air load M_{ms} gTransducer resonance frequency (influences Rms and M_{m}) f_s HzMechanical Cateor of driver in free air, considering R_{ms} only (influences R_{ms}) Q_{ts} 4.1.2Equalization f_0 <	Effective radiation surface	S _d	cm ²
Nominal impedance rated by manufacturer Z_n Ω Electrical voice-coil resistance at DC R_e Ω Voice coil inductance L_e mHElectric resistance due to eddy current losses R_2 Ω Electrical inductance due to eddy current losses L_2 mHElectrical inductance due to eddy current losses L_3 Ω Electrical inductance due to eddy current losses L_3 mHFactor of real part in WRIGHT model K Ω Exponent of real part in WRIGHT model K_{rm} Ω Exponent of real part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{sm} Ω Exponent of imaginary part in WRIGHT model R_{sm} Ω Exponent of imaginary part in WRIGHT model R_{sm} M_{sm} Effective instantaneous electrodynamic coupling factor (force factor of the mo- tor) defined by the integral of the magnetic flux density B over the voice coil length l M_{rms} Mechanical resistance of driver suspension losses R_{ms} kg/s Mechanical resistance of driver suspension losses R_{ms} kg/s Mechanical resistance of driver in free air, considering R_{ms} only (influences R_{ms}) Q_{ts} Atta Equalization f_s HzHigh pass filter alignment: f_0 HzA.Butterworth filter (4 th and 6 th order) f_0 A.Butterworth filter (4 th and 6 th order) f_0 A.Butterworth filter (4 th and 6 th order) f_0 <	Diameter of round effective radiation surface	d_{d}	cm
Electrical voice-coil resistance at DC R_e Ω Voice coil inductance L_e mHElectric resistance due to eddy current losses R_2 Ω Electrical inductance due to eddy current losses L_2 mHElectrical inductance due to eddy current losses R_3 Ω Electrical inductance due to eddy current losses L_3 mHElectrical inductance due to eddy current losses L_3 mHElectrical inductance due to eddy current losses L_3 mHFactor of real part in WRIGHT model K Ω Exponent of real part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Mechanical stiffness of driver suspension losses R_{ms} N/M Mechanical resistance of driver suspension losses R_{ms} N/M Mechanical resistance of driver suspension losses R_{ms} R_{ms} Mechanical Q-factor of driver in free air, considering R_m only (influences R_m) Q_{ts} 4.1.2 Equalization f_s HizHigh pass filter alignment: f_0 Hiz2. Bessel filter (4 th and 6 th order) <td>Nominal impedance rated by manufacturer</td> <td>$Z_{\rm n}$</td> <td>Ω</td>	Nominal impedance rated by manufacturer	$Z_{\rm n}$	Ω
Voice coil inductance L_e mHElectric resistance due to eddy current losses R_2 Ω Electrical inductance due to eddy current losses L_2 mHElectrical inductance due to eddy current losses L_3 Ω Electrical inductance due to eddy current losses L_3 mHFactor in LEACH model K Ω Exponent in LEACH model K Ω Exponent of real part in WRIGHT model K_{rm} Ω Exponent of real part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{rm} Ω Mechanical stiffness of driver suspension (inverse of compliance C_{ms}) K_{ms} N/mm Mechanical stiffness of driver suspension losses R_{ms} kg/s M_{rm} Mechanical resistance of driver suspension losses R_{ms} kg/s M_{rm} Mechanical Q-factor of driver in free air, considering R_{ms} only (influences R_{ms}) Q_{ts} $$ Alignment	Electrical voice-coil resistance at DC	R _e	Ω
Electric resistance due to eddy current losses R_2 Ω Electric resistance due to eddy current losses L_2 mHElectric resistance due to eddy current losses R_3 Ω Electric resistance due to eddy current losses L_3 mHFactor in LEACH model K Ω Factor in LEACH model R Ω Exponent in LEACH model R Ω Exponent of real part in WRIGHT model K_{rm} Ω Exponent of real part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{xm} Ω Exponent of imaginary part in WRIGHT model K_{xm} Ω Effective instantaneous electrodynamic coupling factor (force factor of the mo- tor) defined by the integral of the magnetic flux density B over the voice coil length l Bl N/A Mechanical resistance of driver suspension losses R_{ms} kg/s $M_{mchanical resistance of driver suspension lossesR_{ms}kg/sMechanical Q-factor of driver in free air, considering R_{ms} only (influences R_{ms})Q_{ts}4.12 EqualizationI_{tr}I_{tr}I_{tr}Alignment Type:2. Bessel filter (4^{th} and 6^{th} order)I_{tr}I_{tr}A Butterworth filter (4^{th} and 6^{th} order)I_{tr}$	Voice coil inductance	Le	mH
Electrical inductance due to eddy current losses L_2 mHElectric resistance due to eddy current losses R_3 Ω Electrical inductance due to eddy current losses L_3 mHFactor in LEACH model K Ω Exponent in LEACH model n Factor of real part in WRIGHT model K_{rm} Ω Exponent of real part in WRIGHT model E_{rm} Factor of imaginary part in WRIGHT model E_{rm} Exponent of imaginary part in WRIGHT model E_{xm} Ω Exponent of imaginary part in WRIGHT model E_{xm} Effective instantaneous electrodynamic coupling factor (force factor of the mo- tor) defined by the integral of the magnetic flux density B over the voice coil length 1 Bl N/AMechanical resistance of driver suspension losses R_{ms} kg/sMMechanical resistance of driver suspension losses R_{ms} kg/sMMechanical mass of driver diaphragm assembly including voice coil and air load M_{ms} g4.1.2Equalization f_s HzHigh pass filter alignment:A. Butterworth filter (4 th and 6 th order)3. Chebyshev filter (4 th and 6 th order)4. Butterworth filter (4 th and 6 th order)4. Butterworth filter (4 th and 6 th order)4. Butterworth filter (4 th and 6 th order)4. Chebyshev Con	Electric resistance due to eddy current losses	R_2	Ω
Electric resistance due to eddy current losses R_3 Ω Electrical inductance due to eddy current losses L_3 mHFactor in LEACH model K Ω Exponent in LEACH model n Factor of real part in WRIGHT model K_{rm} Ω Exponent of real part in WRIGHT model K_{rm} Ω Exponent of imaginary part in WRIGHT model K_{xm} Ω Exponent of imaginary part in WRIGHT model K_{xm} Ω Exponent of imaginary part in WRIGHT model K_{xm} Ω Exponent of imaginary part in WRIGHT model K_{xm} Ω Exponent of imaginary part in WRIGHT model K_{xm} Ω Mechanical stiffness of driver suspension (inverse of compliance Cms) R_{ms} R_{g} Mechanical stiffness of driver suspension losses R_{ms} kg/s R/A Mechanical resistance of driver suspension losses R_{ms} kg/s R/A Mechanical Q-factor of driver in free air, considering R_{ms} only (influences R_{ms}) Q_{ts} 4.1.2 Equalization4.1.2 Equalization4.1.2 Equalization4.1.2 Equalization High pass filter alignment:	Electrical inductance due to eddy current losses	L ₂	mH
Electrical inductance due to eddy current losses L_3 mHFactor in LEACH model K Ω Exponent in LEACH model n $$ Factor of real part in WRIGHT model K_{rm} Ω Exponent of real part in WRIGHT model E_{rm} $$ Factor of imaginary part in WRIGHT model E_{rm} $$ Exponent of imaginary part in WRIGHT model E_{xm} Ω Exponent of imaginary part in WRIGHT model E_{xm} $$ Effective instantaneous electrodynamic coupling factor (force factor of the mo- tor) defined by the integral of the magnetic flux density B over the voice coil length 1 Bl N/AMechanical stiffness of driver suspension losses R_{ms} kg/s MMechanical resistance of driver suspension losses R_{ms} kg/s MMechanical ass of driver diaphragm assembly including voice coil and air load M_{ms} ggTransducer resonance frequency (influences Rms and Mms) f_s HzHzMechanical Q-factor of driver in free air, considering R_{ms} only (influences R_{ms}) Q_{ts} 4.1.2 Equalization High pass filter alignment:A. Butterworth filter (4 th and 6 th order)4. Butterworth filter (4 th and 6 th order)4. Butterworth filter (4 th and 6 th order)4. Butterworth filter (4 th and 6 th order)	Electric resistance due to eddy current losses	R ₃	Ω
Factor in LEACH model K Ω Exponent in LEACH model n Factor of real part in WRIGHT model K_{rm} Ω Exponent of real part in WRIGHT model E_{rm} $$ Factor of imaginary part in WRIGHT model K_{xm} Ω Exponent of imaginary part in WRIGHT model K_{xm} Ω Exponent of imaginary part in WRIGHT model K_{xm} Ω Exponent of imaginary part in WRIGHT model E_{xm} Effective instantaneous electrodynamic coupling factor (force factor of the mo- tor) defined by the integral of the magnetic flux density B over the voice coil length I Bl N/AMechanical stiffness of driver suspension (inverse of compliance C_{ms}) K_{ms} N/mmMechanical resistance of driver suspension losses R_{ms} kg/sMechanical resistance of driver suspension losses R_{ms} kg/sMechanical Q-factor of driver in free air, considering R_{ms} only (influences R_{ms}) Q_{ts} 4.1.2 Equalization f_s HzHigh pass filter alignment: $$ $$ A. Biquad filter 1 Biquad filter $$ 3. Chebyshev filter (4 th and 6 th order) S_{0} UnitTarget Cutoff Frequency f_0 HzChebyshev Constant C_{0 $$ Arbitrary target transfer behavior T_{0} HzTarget response as matrix containing frequencies and corresponding levels $$	Electrical inductance due to eddy current losses	L ₃	mH
Exponent in LEACH modelnFactor of real part in WRIGHT model K_{rm} Ω Exponent of real part in WRIGHT model E_{rm} Factor of imaginary part in WRIGHT model K_{xm} Ω Exponent of imaginary part in WRIGHT model E_{xm} Effective instantaneous electrodynamic coupling factor (force factor of the mo- tor) defined by the integral of the magnetic flux density B over the voice coil length I Bl N/AMechanical stiffness of driver suspension (inverse of compliance Cms) K_{ms} N/mmMechanical resistance of driver suspension losses R_{ms} kg/sMechanical resistance of driver diaphragm assembly including voice coil and air load M_{ms} gTransducer resonance frequency (influences Rms and Mms) f_s HzMechanical Q-factor of driver in free air, considering Rms only (influences Rms) Q_{ts} 4.1.2 Equalization High pass filter alignment:Alignment Type:1. Biquad filter2. Bessel filter (4 th and 6 th order)3. Chebyshev filter (4 th and 6 th order)4. Butterworth filter (4 th and 6 th order)4. Butterworth filter (4 th and 6 th order)4. Chebyshev Constant f_0 HzChebyshev Constant $C_{chebyshev}$ Arbitrary target transfer behavior T_{arget} response as matrix containing frequencies and corresponding levels	Factor in LEACH model	K	Ω
Factor of real part in WRIGHT model $K_{\rm rm}$ Ω Exponent of real part in WRIGHT model $E_{\rm rm}$ Factor of imaginary part in WRIGHT model $K_{\rm xm}$ Ω Exponent of imaginary part in WRIGHT model $E_{\rm xm}$ Effective instantaneous electrodynamic coupling factor (force factor of the mo- tor) defined by the integral of the magnetic flux density B over the voice coil length 1 Bl N/AMechanical resistance of driver suspension (inverse of compliance $C_{\rm ms}$) $K_{\rm ms}$ N/mmMechanical resistance of driver suspension losses $R_{\rm ms}$ kg/sMechanical mass of driver diaphragm assembly including voice coil and air load $M_{\rm ms}$ gTransducer resonance frequency (influences Rms and Mms) $f_{\rm s}$ HzMechanical Q-factor of driver in free air, considering Rms only (influences Rms) $Q_{\rm ts}$ 4.1.2EqualizationHigh pass filter alignment:A. Butterworth filter (4th and 6th order)3.Chebyshev filter (4th and 6th order)4.Butterworth filter (4th and 6th order)4.Target Cutoff Frequency f_0 HzChebyshev Constant <t< td=""><td>Exponent in LEACH model</td><td>n</td><td></td></t<>	Exponent in LEACH model	n	
Exponent of real part in WRIGHT model $E_{\rm rm}$ $$ Factor of imaginary part in WRIGHT model $K_{\rm xm}$ Ω Exponent of imaginary part in WRIGHT model $E_{\rm xm}$ $$ Effective instantaneous electrodynamic coupling factor (force factor of the motor) defined by the integral of the magnetic flux density B over the voice coil Bl N/Alength I $R_{\rm ms}$ N/A N/A N/A Mechanical stiffness of driver suspension (inverse of compliance $C_{\rm ms}$) $K_{\rm ms}$ N/A Mechanical resistance of driver suspension losses $R_{\rm ms}$ kg/s Mechanical mass of driver diaphragm assembly including voice coil and air load $M_{\rm ms}$ g Transducer resonance frequency (influences Rms and $M_{\rm ms}$) $f_{\rm s}$ HzMechanical Q-factor of driver in free air, considering $R_{\rm ms}$ only (influences $R_{\rm ms}$) $Q_{\rm ts}$ 4.1.2 Equalization $$ $$ $$ $$ High pass filter alignment: $$ $$ $$ A geneter $Symbol$ Unit $$ A geneter f_0 Hz $$ $$ $$ $$ $$ Parameter f_0 Hz $$ $$ $$ $$ $$ Arbitrary target transfer behavior $$ $$ Target response as matrix containing frequencies and corresponding levels $$	Factor of real part in WRIGHT model	K _{rm}	Ω
Factor of imaginary part in WRIGHT model K_{xm} Ω Exponent of imaginary part in WRIGHT model E_{xm} Effective instantaneous electrodynamic coupling factor (force factor of the motor) defined by the integral of the magnetic flux density B over the voice coil length 1BlN/AMechanical stiffness of driver suspension (inverse of compliance C_{ms}) K_{ms} N/mmMechanical resistance of driver suspension losses R_{ms} kg/sMechanical mass of driver diaphragm assembly including voice coil and air load M_{ms} gTransducer resonance frequency (influences Rms and M_{ms}) f_s HzMechanical Q-factor of driver in free air, considering R_{ms} only (influences R_{ms}) Q_{ts} 4.1.2 Equalization High pass filter alignment: 2.Bessel filter (4 th and 6 th order)3. Chebyshev filter (4 th and 6 th order)4. Butterworth filter (4 th and 6 th order) f_0 HzTarget Cutoff Frequency f_0 HzChebyshev Constant $C_{Chebyshev}$ Arbitrary target transfer behavior	Exponent of real part in WRIGHT model	E _{rm}	
Exponent of imaginary part in WRIGHT model $E_{\rm xm}$ Effective instantaneous electrodynamic coupling factor (force factor of the mo- tor) defined by the integral of the magnetic flux density B over the voice coil length 1BlN/AMechanical stiffness of driver suspension (inverse of compliance Cms) $K_{\rm ms}$ N/mmMechanical resistance of driver suspension losses $R_{\rm ms}$ kg/sMechanical resistance of driver diaphragm assembly including voice coil and air load $M_{\rm ms}$ gTransducer resonance frequency (influences Rms and Mms) f_s HzMechanical Q-factor of driver in free air, considering Rms only (influences Rms) $Q_{\rm ts}$ 4.1.2EqualizationHigh pass filter alignment: 2.81.Biquad filter2.Bessel filter (4th and 6th order)3.Chebyshev filter (4th and 6th order)4.Butterworth filter (4th and 6th order) <t< td=""><td>Factor of imaginary part in WRIGHT model</td><td>K_{xm}</td><td>Ω</td></t<>	Factor of imaginary part in WRIGHT model	K _{xm}	Ω
Effective instantaneous electrodynamic coupling factor (force factor of the mo- tor) defined by the integral of the magnetic flux density B over the voice coil length IBlN/AMechanical stiffness of driver suspension (inverse of compliance Cms)KmsN/mmMechanical resistance of driver suspension lossesRmskg/sMechanical resistance of driver diaphragm assembly including voice coil and air loadMmsgTransducer resonance frequency (influences Rms and Mms)f_sHzMechanical Q-factor of driver in free air, considering Rms only (influences Rms)Qts4.1.2 EqualizationHigh pass filter alignment:Alignment Type: 1. Biquad filter2. Bessel filter (4 th and 6 th order)3. Chebyshev filter (4 th and 6 th order)SymbolUnitTarget Cutoff FrequencyfoHzChebyshev ConstantChebyshev ConstantChebyshev as matrix containing frequencies and corresponding levels	Exponent of imaginary part in WRIGHT model	$E_{\rm xm}$	
Mechanical stiffness of driver suspension (inverse of compliance C_{ms}) K_{ms} N/mmMechanical resistance of driver suspension losses R_{ms} kg/sMechanical mass of driver diaphragm assembly including voice coil and air load M_{ms} gTransducer resonance frequency (influences Rms and Mms) f_s HzMechanical Q-factor of driver in free air, considering Rms only (influences Rms) Q_{ts} 4.1.2 Equalization High pass filter alignment:Alignment Type:1. Biquad filter2. Bessel filter (4^{th} and 6^{th} order)3. Chebyshev filter (4^{th} and 6^{th} order)4. Butterworth filter (4^{th} and 6^{th} order)4. Butterworth filter (4^{th} and 6^{th} order)7arget Cutoff Frequency f_0 HzChebyshev Constant $C_{Chebyshev}$ Arbitrary target transfer behaviorTarget response as matrix containing frequencies and corresponding levels	Effective instantaneous electrodynamic coupling factor (force factor of the mo- tor) defined by the integral of the magnetic flux density B over the voice coil length l	Bl	N/A
Mechanical resistance of driver suspension losses R_{ms} kg/sMechanical mass of driver diaphragm assembly including voice coil and air load M_{ms} gTransducer resonance frequency (influences Rms and Mms) f_s HzMechanical Q-factor of driver in free air, considering Rms only (influences Rms) Q_{ts} 4.1.2 Equalization High pass filter alignment:Alignment Type:1. Biquad filter2. Bessel filter (4 th and 6 th order)3. Chebyshev filter (4 th and 6 th order)4. Butterworth filter (4 th and 6 th order)4. Butterworth filter (4 th and 6 th order)fo4. Butterworth filter (4 th and 6 th order)5. Chebyshev Constant f_0 HzArbitrary target transfer behaviorTarget response as matrix containing frequencies and corresponding levels	Mechanical stiffness of driver suspension (inverse of compliance C _{ms})	K _{ms}	N/mm
Mechanical mass of driver diaphragm assembly including voice coil and air load M_{ms} gTransducer resonance frequency (influences Rms and Mms) f_s HzMechanical Q-factor of driver in free air, considering Rms only (influences Rms) Q_{ts} 4.1.2 Equalization High pass filter alignment:Alignment Type:1. Biquad filter2. Bessel filter (4th and 6th order)3. Chebyshev filter (4th and 6th order)4. Butterworth filter (4th and 6th order)4. Butterworth filter (4th and 6th order)Chebyshev Constant f_0 HzArbitrary target transfer behaviorTarget response as matrix containing frequencies and corresponding levels	Mechanical resistance of driver suspension losses	R _{ms}	kg/s
Transducer resonance frequency (influences Rms and Mms) $f_{\rm s}$ HzMechanical Q-factor of driver in free air, considering Rms only (influences Rms) $Q_{\rm ts}$ 4.1.2 EqualizationHigh pass filter alignment: Alignment Type: 1. Biquad filter 2. Bessel filter (4 th and 6 th order) 3. Chebyshev filter (4 th and 6 th order) 4. Butterworth filter (4 th and 6 th order) 4. Butterworth filter (4 th and 6 th order) 4. Butterworth filter (4 th and 6 th order) 	Mechanical mass of driver diaphragm assembly including voice coil and air load	M _{ms}	g
Mechanical Q-factor of driver in free air, considering Rms only (influences Rms) Qts 4.1.2 Equalization High pass filter alignment: Alignment Type: . . . 1. Biquad filter . . . 2. Bessel filter (4 th and 6 th order) . . . 3. Chebyshev filter (4 th and 6 th order) . . . 4. Butterworth filter (4 th and 6 th order) . . . 7arget Cutoff Frequency f_0 Hz Chebyshev Constant . . Arbitrary target transfer behavior Target response as matrix containing frequencies and corresponding levels	Transducer resonance frequency (influences Rms and Mms)	f _s	Hz
4.1.2 Equalization High pass filter alignment: Alignment Type: 1. Biquad filter 2. Bessel filter (4 th and 6 th order) 3. Chebyshev filter (4 th and 6 th order) 4. Butterworth filter (4 th and 6 th order) 4. Butterworth filter (4 th and 6 th order) 7 arget Cutoff Frequency f_0 Farget Cutoff Frequency f_0 Chebyshev Constant C _{Chebyshev} Arbitrary target transfer behavior Target response as matrix containing frequencies and corresponding levels	Mechanical Q-factor of driver in free air, considering R_{ms} only (influences R_{ms})	$Q_{\rm ts}$	
High pass filter alignment: Alignment Type: 1. Biquad filter 2. Bessel filter (4 th and 6 th order) 3. Chebyshev filter (4 th and 6 th order) 4. Butterworth filter (4 th and 6 th order) 7 Target Cutoff Frequency Symbol Target Cutoff Frequency f ₀ Hz Chebyshev Constant Arbitrary target transfer behavior Target response as matrix containing frequencies and corresponding levels	4.1.2 Equalization		
Alignment Type: 1. Biquad filter 2. Bessel filter (4 th and 6 th order) 3. Chebyshev filter (4 th and 6 th order) 4. Butterworth filter (4 th and 6 th order) 7. Betterworth filter (4 th and 6 th order) 6. Butterworth filter (4 th and 6 th order) 7. Butterworth filter (4 th and 6 th order) 7. Butterworth filter (4 th and 6 th order) 6. Butterworth filter (4 th and 6 th order) 7 Target Cutoff Frequency Symbol 9. Chebyshev Constant f_0 1. Arbitrary target transfer behavior $C_{Chebyshev}$ 1. Target response as matrix containing frequencies and corresponding levels V	High pass filter alignment:		
Parameter Symbol Unit Target Cutoff Frequency f_0 Hz Chebyshev Constant $C_{Chebyshev}$ Arbitrary target transfer behavior Target response as matrix containing frequencies and corresponding levels	 Alignment Type: 1. Biquad filter 2. Bessel filter (4th and 6th order) 3. Chebyshev filter (4th and 6th order) 4. Butterworth filter (4th and 6th order) 		
Target Cutoff Frequency f_0 HzChebyshev Constant $\mathcal{C}_{Chebyshev}$ Arbitrary target transfer behaviorTarget response as matrix containing frequencies and corresponding levels	Parameter	Symbol	Unit
Chebyshev Constant $C_{Chebyshev}$ Arbitrary target transfer behaviorTarget response as matrix containing frequencies and corresponding levels	Target Cutoff Frequency	f_0	Hz
Arbitrary target transfer behavior Target response as matrix containing frequencies and corresponding levels	Chebyshev Constant	$C_{\mathrm{Chebyshev}}$	
Target response as matrix containing frequencies and corresponding levels	Arbitrary target transfer behavior		
	Target response as matrix containing frequencies and corresponding levels		

4.1.3 Amplifier		
Parameter	Symbol	Unit
Output-resistance of amplifier output including cables	R _g	Ω

4.1.4 Stimulus					
Type of input signal:					
1. Pink noise					
2. Typical program (IEC 60268-21)	2. Typical program (IEC 60268-21)				
3. External spectrum					
Bandpass:					
1. Ideal (rectangle)					
2. Butterworth					
Parameter	Symbol	Unit			
Cutoff frequency of the high pass filter	fend	Hz			
Slope of high pass filter	$m_{\mu\nu}$	dB			
Cutoff frequency of the Low pass filter	f _{cLP}	Hz			
Slope of low pass filter		dB			
Crest factor	CF	dB			
Difference between crest factor for voltage and current signal and crest factor		- ub			
for displacement signal	ΔCF	dB			
4.1.5 Enclosure					
Enclosure type:					
1. Baffle					
2 Closed box					
 Vented box (with slit or tube-shaped vent) 					
4 Box with passive radiator					
5 Bandnass system (with slit or tube-shaned vent)					
Parameter	Symbol	Unit			
Geometrical parameters:		•			
Volume of air in enclosure	V _b	<u> </u>			
Surface area of port	S _p	cm²			
Diameter of port	$d_{ m p}$	cm			
Length of port	lp	cm			
Width of surface area of port	w _p	cm			
Height of surface area of port	$h_{ m p}$	cm			
Effective projected surface area of passive radiator diaphragm	S _r	cm ²			
Diameter of round effective projected surface area of passive radiator dia-		am			
phragm	$u_{\rm r}$	CIII			
Volume of air in front enclosure	$V_{\rm f}$	1			
Lumped parameters:					
Acoustic resistance of losses due to leakage	R _{al}	kNs/m ⁵			
Acoustic mass of port including air load	$R_{\rm ap}$	kNs/m ³			
Acoustic resistance of port losses	M _{ap}	kg/m ⁴			
Mechanical mass of passive radiator diaphragm including voice coil and air load	M _{mr}	g			
Mechanical stiffness of passive radiator suspension (inverse of compliance C_{mr})	K _{mr}	N/mm			
Mechanical resistance of passive radiator suspension losses	R _{mr}	kg/s			
Derived parameters:	Derived parameters:				
Q-factor of acoustic system at fb considering leakage losses	Q_1				
Resonance frequency of enclosure-port system	$f_{\rm b}$	Hz			
Q-factor considering port losses	Q _n				
Resonance frequency of enclosure-port system $f_{\rm f}$					
4.1.6 Room and Radiation					
Radiation into half and full space: 2π or 4π (anechoic, piston)		1			
Parameter	Symbol	Unit			
Distance to radiation point in far field	$r_{\rm ref}$	m			

4.2 Results				
4.2.1 Electro-dynamical Transducer				
Parameter	Symbol	Unit		
Derived parameters:				
Transducer resonance frequency (influences $R_{\rm ms}$ and $M_{\rm ms}$)	fs	Hz		
Mechanical Q-factor of driver in free air, considering R_{ms} only	0 _{ms}			
Electrical Q-factor of driver in free air, considering R_e only	O_{es}			
Mechanical Q-factor of driver in free air, considering Rms only (influences R_{ms})	Q_{ts}			
Equivalent air volume of driver suspension	Vas	1		
Efficiency and Sensitivity:	45			
Passband efficiency of driver operated in baffle	$\eta_{ m Pb}$	%		
Passband sensitivity of driver operated in baffle with reference voltage uref and	110	10		
reference distance r _{ref} defined in ppg.	$L_{\rm Pb}$	dB		
4.2.2 Enclosure				
Parameter	Symbol	Unit		
Lumped parameters:				
Acoustical compliance of air in enclosure	\mathcal{C}_{ab}	m ³ /Pa		
Mechanical stiffness of air in enclosure	K _{mb}	N/mm		
Acoustical compliance of air in front enclosure	$C_{\rm f}$	m ³ /Pa		
Total acoustical compliance of transducer and enclosure	C _{at}	m ³ /Pa		
Total mechanical stiffness of transducer and enclosure	K _{mt}	N/mm		
System compliance ratio	α			
Derived parameters:				
Resonance frequency of the closed box system	fc	Hz		
Passive-Radiator resonance frequency (free air)	fn	Hz		
Mechanical Q-factor of passive radiator in free air, considering R _{mr} only	$Q_{\rm mn}$			
Total Q-factor considering all acoustical losses	$\frac{O_{\rm h}}{O_{\rm h}}$			
Q-factor of the closed box system (considering system load)	$\frac{c_{\rm b}}{Q_{\rm tc}}$			
4.2.3 State Variables and Further Characteristics (depending on stimulus)				
Parameter	Symbol	Unit		
Reference Voltage-Sensitivity of selected stimulus for $r_{ref} = 1 \text{ m}$ and $u_{ref} = 1 \text{ V}$	$L_{\rm R}$	dB		
according to IEC 60268-22				
Reference efficiency for selected stimulus according to IEC 60268-22	$\eta_{ m R}$	%		
Far field SPL at distance r _{ref} for stimulus	$L_{p_{far}}$	dB		
Terminal voltage (rms) for stimulus	$U_{\mathrm{T}_{rms}}$	V		
Generator voltage (rms) for stimulus	U _{Grms}	V		
Terminal voltage (peak) for stimulus	UTnoak	V		
Generator voltage (peak) for stimulus	U _{Gpeak}	V		
Input current (rms) for stimulus	ITrms	Α		
Input current (peak) for stimulus	I _{Tuesh}	Α		
Voice coil displacement (rms) for stimulus	X -	mm		
Voice coil displacement (neak) for stimulus				
Voice coil volocity (rms) for stimulus				
SDL in roar air volume for stimulus	v _{crms}			
SPL in rear air volume for stimulus	$p_{ m box}$	uв		
4.2.4 Transfer functions	.			
Function	Symbol	Unit		
Voltage Sensitivity	L(f)	dB		
Efficiency	$\eta(f)$	%		
Electrical Impedance:				

5 References

S58

Total electrical impedance	$Z_{o}(f)$	Ω
Back EMF	Blv/u_{a}	Ω
DC-Resistance of the transducer and the amplifier output resistance	$R_{o} + R_{a}$	Ω
Voice coil impedance	$Z_{al}(f)$.0.
Far Field Sound Pressure:	26107	
Total Sound Pressure	$H_{\rm nc}(f,r)$	dB
Contribution from port	$H_{\rm p}(f,r)$	dB
Target sound pressure	$H_{t}(f,r)$	dB
Total active system (with equalization)	$H_{\text{total}}(f,r)$	dB
Displacement divided by generator voltage:		
Voice coil	$x_{\rm c}(f)/u_{\rm g}$	dB
Passive radiator	$x_{\rm r}(f)/u_{\rm g}$	dB
Velocity divided by generator voltage:	8	
Voice coil	$v_{\rm c}(f)/u_{\rm g}$	dB
Passive radiator	$v_{\rm r/p}(f)/u_{\rm g}$	dB
Force divided by generator voltage:	-// • //	
At the motor	$F_{\rm c}(f)/u_{\rm g}$	dB
At M _{ms}	$F_{\rm Mms}(f)/u_{\rm g}$	dB
At R _{ms}	$F_{\rm Rms}(f)/u_{\rm g}$	dB
At C_{ms}	$F_{\rm Cms}(f)/u_{\rm g}$	dB
Into the acoustical system	$F_{\rm L}(f)/u_{\rm g}$	dB
Volume velocity divided by generator voltage:	2411 8	
From S _d	$q_{\rm Sd}(f)/u_{\rm g}$	dB
Into C _{ab}	$q_{\rm c}(f)/u_{\rm g}$	dB
Into C_f	$q_{\rm f}(f)/u_{\sigma}$	dB
Into R_{al}	$q_1(f)/u_{\sigma}$	dB
Into port/passive radiator	$q_{\rm p}(f)/u_{\rm g}$	dB
Amplifier transfer function (voltage drop)	$u_{t}(f)/u_{q}$	dB
Prefilter transfer function (Equalizer)	$H_{equ}(f)$	dB
Stimulus Spectrum:	cqu o y	
Relative input spectrum	$G_{\rm w}(f)$	dB
Aligned input spectrum	$G_{eq}(f)$	dB
Voltage Spectrum:		
Terminal voltage	u _t	dB
Amplifier output voltage without load	$u_{\rm g}$	dB
Power Spectrum:	· • •	
Electrical generator output power	Pe	dB
Acoustical output power	Pa	dB
Power dissipation in amplifier	$P_{R_{g}}$	dB
Spectrum of the sound pressure level	$L_{p_{far}}$	dB
State Spectrum:	- 144	
Voice Coil Displacement	$L_{x_{coil}}$	dB
Voice Coil Velocity	$L_{v_{coil}}$	dB
Voice Coil Force	$L_{F_{coil}}$	dB
Radiated Volume Velocity	L_{q_a}	dB

5 References

5.1	Related Modules	LPM Linear Parameter Measurement
		SIM Simulation
		SIM-AUR Simulation / Auralization

5.2	Manuals	LSIM Manual, as provided with dB-Lab 210.560 or higher
5.3	Related Papers	Wolfgang Klippel: "Green Speaker Design (Part 1: Optimal Use of System Re- sources)", 2019, Klippel GmbH
		Wolfgang Klippel: " <u>Green Speaker Design (Part 2: Optimal Use of Transducer</u> <u>Resources)</u> ", 2019, Klippel GmbH
		R. H. Small: "Closed-Box Loudspeaker Systems", 2006, School of electrical Engineering, The University of Sydney, Australia

Find explanations for symbols at: http://www.klippel.de/know-how/literature.html Last updated: May 25, 2021

