Higher Modal Analysis - HMA (Pre-Release)

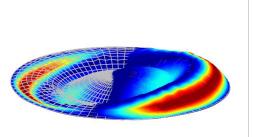
Specification to the KLIPPEL ANALYZER SYSTEM (Document Revision 1.3)

PRELIMINARY SPECIFICATION – PRODUCT IS STILL AWAITING FORMAL RELEASE

This specification is preliminary and is subject to change.

FEATURES

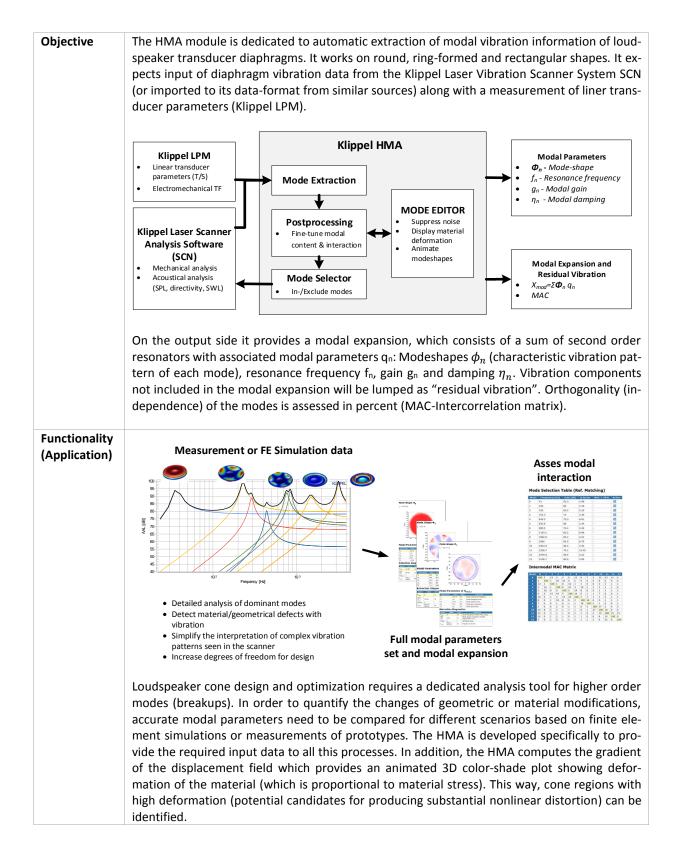
- Automatic Modal Analysis for transducers
- Decomposes vibration into separate modes
- Extracts modal parameters (e.g. damping)
- Displays material deformation (~stress)


BENEFITS

- Study characteristic vibration patterns individually and regarding their interaction
- Analyze measured and simulated data in the exact same way (=modal representation)
- Validate FEA simulation results
- Find sources of nonlinear distortion
- Solve sound radiation problems
- Improve cone geometry design

Modal analysis is an optimal method for analysis of vibrating loudspeaker cones. The HMA decomposes the complex scanned vibration data into a set of second order resonators with associated mode-shapes (characteristic vibration-patterns). Studying the properties of these resonators (modal parameters) is highly valuable for the assessment of the mechano-acoustical performance. An even more detailed insight on how changes in these modal parameters influence the total response can be gained by studying the modal expansion, i. e. the identified set of transfer functions and mode shapes. The HMA allows including or excluding sets of modes from the accumulated expansion to study these effects. HMA is designed to integrate smoothly with measurements by the Klippel Vibration Scanning System (SCN). Data import from Polytec LDV devices or Finite Element software is possible through additional optional bridge-modules (POLY2SCN, FEM2SCN).

Article number



CONTENT

1	Principle	. 3
2	Components of the HMA Module	. 4
3	Higher Order Modal Analysis	. 5
4	Input parameters (setup)	. 7
5	Measurement Results	. 8
6	Application/Diagnostics	12

1 Principle

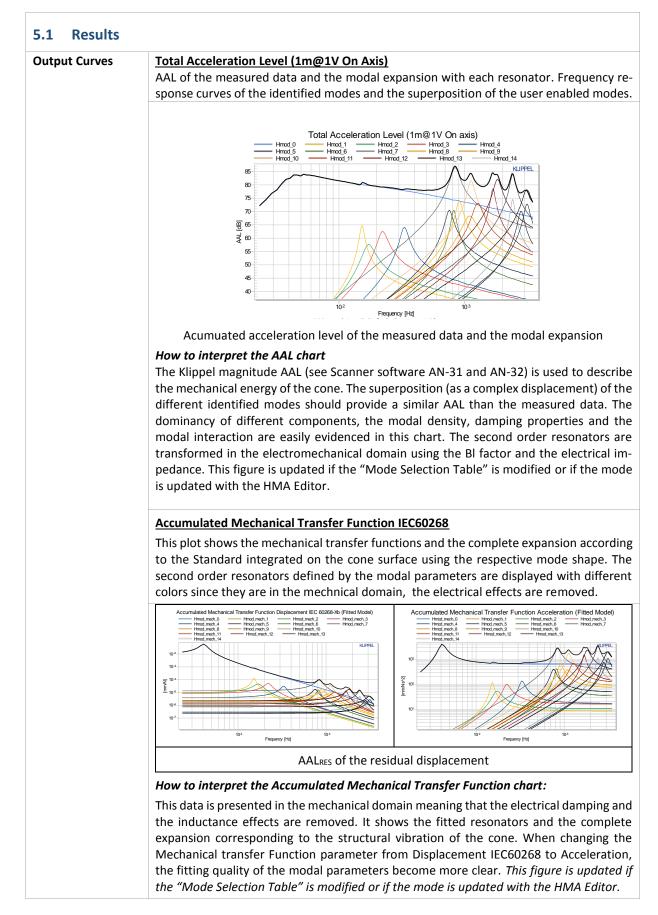
2 Components of the HMA Module

HMA Software	Measurement module for	r conducting Higher Order Modal Analysis	S60
SCN Laser Scanning Vibrometer Analysis Software	Analysis software for vibr	ometric laser data	C5 (2510 010)
2.2 Additional com	ponents for self-perform	med measurements	Spec#
Measurement device		Klippel Analyzer 3 (alternatively Distortion Analyzer 2) is the hardware platform for the measurement modules performing the gen- eration, acquisition and digital signal pro- cessing in real time.	H1 H3
LPM – Module	Electrical impedance	Module to identify the electrical and me- chanical parameters of electro-dynamical transducers by measuring the voltage and current at the speaker terminals.	S2
TRF - Module	Spur Yr ng (part) 2	The Transfer function (TRF) is a dedicated PC software module for measurement of the transfer behavior of a loudspeaker.	S7
Laser Scanning Vibrome- ter Hardware (SCN)		The Scanning Vibrometer (SCN) performs a non-contact measurement of the mechani- cal vibration and the geometry data of cones, diaphragms, panels and enclosures.	C5 (2510 004)
2.3 Alternative way	s to gather SCN/LPM d	ata – 2SCN bridge product family	Spec#
FEM2SCN Module	Virtual Impedance Magnitude	Module to identify the electrical and me- chanical parameters of electro-dynamical transducers from finite element simulations in COMSOL and PAFEC and for importing surface vibration data to Klippel SCN format.	Conta sales
POLY2SCN Module		Module for importing surface vibration data to Klippel SCN format.	S45

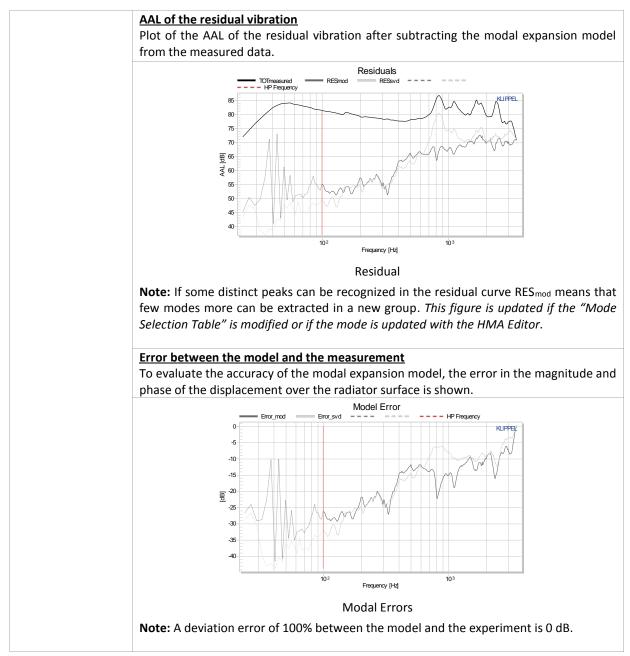
3 Higher Order Modal Analysis

3.1 Principle Principle The electromechanical transfer function (voltage displacement) H_x measured at each scanning point, is transformed into the pure mechanical transfer function $H_{x/F}$ via the Bl factor and the electrical impedance of the transducer. $H_{X/F}(\omega) = H_X(\omega) \frac{Ze(\omega)}{Bl}$ The HMA assumes that the vibration field measured on the transducer surface $X(\mathbf{r},\omega)$, can be represented by the superposition of the dominant modes. $X(\mathbf{r},\omega) = \sum_{n=1}^{\infty} \boldsymbol{\varphi}_n(\mathbf{r}) q_n(\omega)$ At each point **r** on the surface the displacement is the product of the mode shape $\varphi_n(\mathbf{r})$ and $q_n(\omega)$ the modal resonator $q_n(\omega) = \frac{\underline{g}_n}{\omega_n^2 - \omega^2 + j\eta_n \omega_n^2}$ described by the following parameters, ω_n the resonance frequency, η_n the modal damping factor and g_n the modal complex gain. The goal of the HMA module is to extract the modal parameters and the mode shapes of the loudspeaker by means of an automatic frequency windowing, singular value decomposition and circle fitting processes. 3.2 **Analysis Process** Vibrometer A detailed scanner data with enough frequency and spatial resolution is required for accurate Scan modal parameter extraction. **TRF Setup:** HMA needs precise information in the lower frequency range. Therefore the following Settings have to be considered. The **frequency range** should conceal a frequency range from **10 Hz to 10000 Hz**, 0 for micro speakers a scan should at least start at 100 Hz. Resolution: 5.86 Hz or lower 0 Averages: 4 or more, depending on the signal to noise ratio (optical acces to dia-0 phragm). More can be required for microspeakers placed under screened cases Shaping: 6-9 dB/oct. for sufficient SNR on the voice coil displacement at high fre-0 quencies. Postprocessing Settings: smoothing and log-reduce to: 60 points/oct. 0 LPM Meas-Lumped parameter model Electrical impedance urement For identification of the piston mode vibration of the loudspeaker the linear parameters are required. The Thiele small parameters measured with the LPM module provide the mechanical information of the piston mode and the characteristics of the electrodynamic motor Frequency [Hz]

Modal	
Extraction	Extraction
	X_{0} X_{res} Peak Detection on AAL _k no f_{k} Group Mode Identification P_{k} X_{mod} Expansion X_{mod} Expansion
	Postprocessing
	The HMA analyses the Accumulated Acceleration Level $AAL(\omega)$ on the driver surface and extract the dominant modes as prominent peaks. Once this process is finished, the modal displacement is synthetized and subtracted from the measured displacement producing the residual vibration to be used in the new extraction. The initial group $k=0$ takes the total measured displacement X_0 which is used to compute the AAL and to find the dominant peaks stored at the resonance frequencies \mathbf{f}_k which are the inputs of the Group Mode Identification which computes the modal parameter vector $\mathbf{P}_{\mathrm{K}}=[\mathbf{f}_n, \mathbf{\eta}_n, \mathbf{g}_n, \mathbf{\varphi}_n]^{\mathrm{T}}$. This vector comprises the resonance frequencies \mathbf{f}_n damping factors $\mathbf{\eta}_n$ complex gains \mathbf{g}_n and mode shapes $\mathbf{\varphi}_n$ of the n^{th} extracted modes of the group. The extracted parameters are used to synthesize the modal displacement X_{mod} by the superposition of the $n=1,2,,N_{dom}$ modes of the different groups $k=1,2,,K_L$. This process is repeated according to the number of groups selected by the user.
Postprocessing and link with SCN software	The HMA includes different tools to analyze the extracted modes. Acoustic cancellations and directivity are symptoms of a non-proper interaction of the structural modes. This process can be significantly simplified and clarified by investigating the effect of the superposition of few dominant modes. This can be easily done with the Mode Selection Table that is presented after the extraction. In order to improve the quality of the extracted modes, the HMA editor provides a powerful technique based on Zernike transform to suppress the noise of the experimental data, which is functional for round speaker shapes. It also provides the regions of the cone exhibiting large material deformations causing nonlinear distortion on the acoustic pressure.

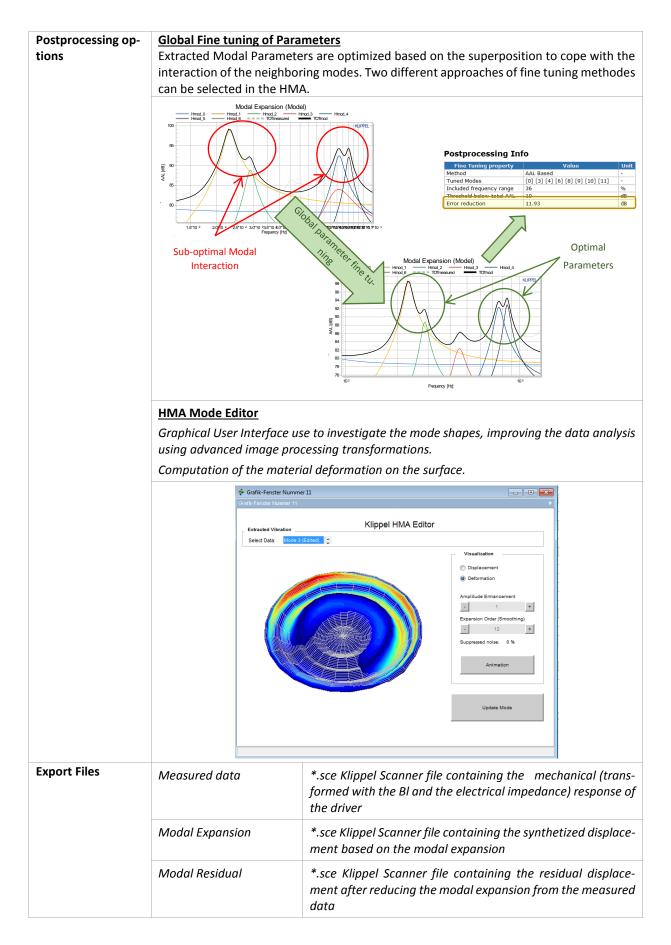

4 Input parameters (setup)

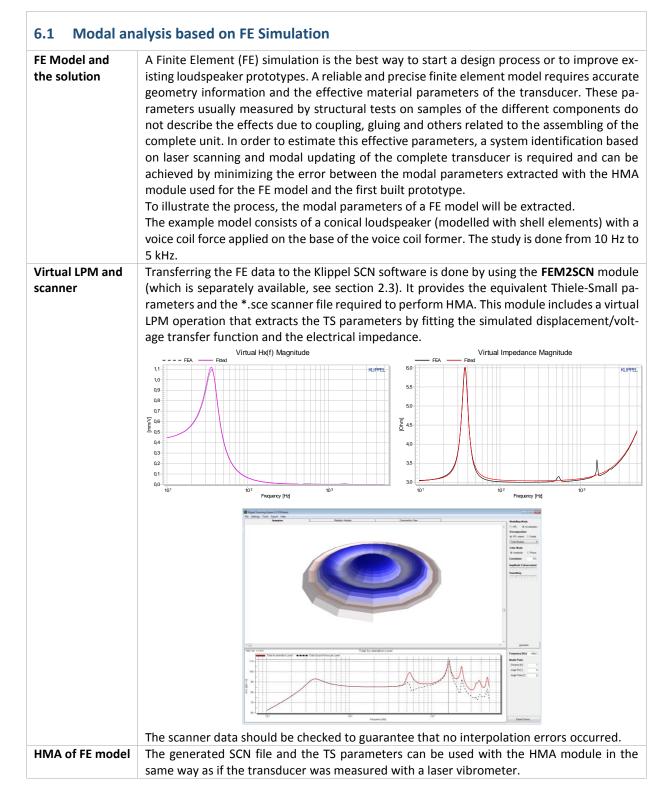
4.1 Input


	Parameter Name	Parameter type	Description
Input Parameters	LPM	Link	Loudspeaker motor and Mechanical transfer function determine the piston mode of the model
			<i>Re</i> : Electrical Resistance
			Le : Voice coil Inductance
			L2 : Para-Inductance of the voice coil
			R2 : Electrical resitance due to eddy currents
			<i>BI</i> : Force factor (Bl product)
			<i>M_{ms}</i> : Mechanical mass
			K_{ms} : Mechanical stiffness of the suspension
			R_{ms} : Mechanical resistance
			λ : Suspension creep factor
Input Files	Exported SCN file*.sce in SCN data-container	Link	Exported Klippel Scanner interpolated vibra- tion/geometry data in ASCII file format (.sce). See SCN manual for details. During the setup process, this file will be loaded into an SCN data container operation stored in a dBLab da- tabase.
Input Variables	Diaphragm shape	Check box	Select the entire diaphragm, ideally including a small portion of the surrounding rigid enclosure:
			 Circular Rectangular Ring (coaxial units)
Input values	Diaphragm dimension	Input Value	Determine the size of the diaphragm
			 Radius (r): Circular Rectangular (<i>I</i>,<i>w</i>): length and width Ring, Internal and external Radius: r_i and r_e
	High pass frequency	Input Value	Avoid HMA to extract low frequency peaks (ar- tifacts) as valid modes.
	Window Peak	Input Value	Value in dB used to determine the lower and upper frequencies of the window. Limit where the amplitude of the AAL curve decays this value at both sides of the resonance frequency.
	Modes per Group	Input Value	Maximum number of modes attempted to be extracted on each group
	Total Groups	Input Value	Total number of groups to be extracted
	Fine tuning Method	Select list	Selection between two methods
			 AAL based Full complex displacement over surface

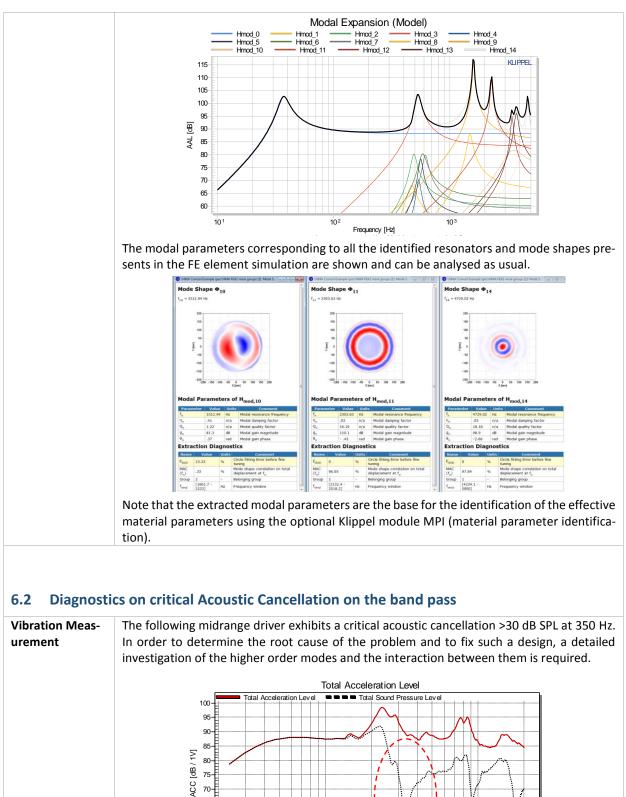
S60

5 Measurement Results




	Graphical	representation of t	he mode shape		le sain		Jel SCI	N color scale.
	with the o	complete modal par	ameters and re	elevant	extract	ion di	agnos	stics informatio
	Mode Sha	ape O 4 (Edited)						
	f ₄ = 329.75 H							
				Modal	Parame	eters o	f H _{mod}	mech.4
		100		Parame		Value	Units	Comment
		80		fn		329.75	Hz	Modal resonance frequ
		60		n _n Q _n		.06 7.7	n/a n/a	Modal damping factor Modal quality factor
		40		g _n		-34.88	dB	Modal gain magnitude
	-	20	-	θ		-2.22	rad	Modal gain phase
	[mm] >	0		Extrac Name	tion Dia	-		
		-20		E _{SVD}	37.5	Uni %		fitting Error before fine tu
		-40		MAC(f _n)	10.28	%	Mode f	shape correlation on total
		-60		Group	3	-	Belon	ging group
		-80 -		f _{wind}	[307.6 - 351.6]	Hz	Frequ	ency window
		-100 -50 Ó X [mm]	50 100					
put Parameters	Summary	ection table of all the extracted			vs the	user to	o activ	vate and deacti
tput Parameters	Summary				ws the	user to	o activ	vate and deacti
put Parameters	Summary different	of all the extracted	ed in the expan	ision.				vate and deacti
put Parameters	Summary different	of all the extracted modes to be include	ed in the expan	ision.	atch	ing		
put Parameters	Summary different Mod	of all the extracted modes to be include	ed in the expan	ef. M	atch	ing)	
put Parameters	Summary different Mode	of all the extracted modes to be include e Selection Frequency (Hz)	ed in the expan Table (Re Gain (dB)	e f. M a	atch	ing)	% Active
put Parameters	Summary different Mode	of all the extracted modes to be include E Selection Frequency (Hz) 127	ed in the expan Table (Re Gain (dB) 133.5	ef. M a Q-fa 3.14	atch	ing) MAC)	% Active ✓ ✓
put Parameters	Summary different Mode 0 1 1 2	of all the extracted modes to be include E Selection 127 2000.4 5632.5	ed in the expan Table (Re <u>Gain (dB)</u> 133.5 132.4 131.2	Q-fa 3.14 11.43 10.63	atch	ing) мас - -)	ん Active マ マ マ
put Parameters	Summary different Mode	of all the extracted modes to be include Selection 127 2000.4 5632.5 8174.2	ed in the expan Table (Re <u>Gain (dB)</u> 133.5 132.4 131.2 127.6	Q-fa 3.14 11.42 13.2	atch ctor	ing))	Active Image: V
put Parameters	Summary different Mode 0 1 1 2 3 4	of all the extracted modes to be include Selection Frequency (Hz) 127 2000.4 5632.5 8174.2 11063	ed in the expan Table (Re Gain (dB) 133.5 132.4 131.2 127.6 125.8	Q-fa 3.14 11.42 10.63 13.2 12.74	atch ctor	ing) - - - - - -)	Active V V V V V V V V
put Parameters	Summary different Mode	of all the extracted modes to be include Selection 127 2000.4 5632.5 8174.2	ed in the expan Table (Re Gain (dB) 133.5 132.4 131.2 127.6	Q-fa 3.14 11.42 13.2	atch ctor	ing))	Active Image: V
put Parameters	Summary different Mode 0 1 1 2 3 4 4 5	of all the extracted modes to be include Selection Frequency (Hz) 127 2000.4 5632.5 8174.2 11063	ed in the expan Table (Re Gain (dB) 133.5 132.4 131.2 127.6 125.8 129.4	Q-fa 3.14 11.43 10.69 13.2 12.74 10.24	atch ctor	ing) - - - - - -)	Active V V V V V V V V
put Parameters	Summary different Mode 0 1 1 2 1 2 1 2 1 2 1 2 1 5 Inte	of all the extracted modes to be include Selection Frequency (Hz) 127 2000.4 5632.5 8174.2 11063 13192.1	ed in the expan Table (Re Gain (dB) 133.5 132.4 131.2 127.6 125.8 129.4 C Matrix (Q-fa 3.14 11.43 10.69 13.2 12.74 10.24	atch	ing) - - - - - -)	% Active V V V V V V V V V V
put Parameters	Summary different Mode 0 1 1 2 3 4 5 Inte 0 0	of all the extracted modes to be include Selection Frequency (Hz) 127 2000.4 5632.5 8174.2 11063 13192.1 Ermodal MAC	ed in the expan Table (Re Gain (dB) 133.5 132.4 131.2 127.6 125.8 129.4 C Matrix (Q-fa 3.14 11.43 10.69 13.2 12.74 10.24	atch ctor	ing) - - - - -) : > 709	Active V V V V V V V V
put Parameters	Summary different Mode 9 1 1 2 3 4 5 Inte 0 1	of all the extracted modes to be include E Selection Frequency (Hz) 127 2000.4 5632.5 8174.2 11063 13192.1 Ermodal MAC 0 100 0	ed in the expan Table (Re Gain (dB) 133.5 132.4 131.2 127.6 125.8 129.4 C Matrix (1 2 0 0 100 0	2 9 0 1 1 1 1 1 1 1 1 1 1	atch ctor 5 4 1 1 1	ing) - - - - - -) => 70% 4 0 0	% Active V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V S 5 2 2
put Parameters	Summary different Mode 0 1 2 3 4 5 Inte 0 1 2	of all the extracted modes to be include E Selection Frequency (Hz) 127 2000.4 5632.5 8174.2 11063 13192.1 Ermodal MAC 0 100 0 0 0	ed in the expan Table (Re Gain (dB) 133.5 132.4 131.2 127.6 125.8 129.4 C Matrix (100 0 0 100	2 9 0 1 1 1 1 1 1 1 1 1 1	atch ctor 5 4 1 1 1 3	ing) - - - - - -) : > 70% 4 0 0 1	% Active V V V V V V V V V V V V V V S 5 2 5
put Parameters	Summary different Mode 9 1 1 2 3 4 5 Inte 0 1	of all the extracted modes to be include E Selection Frequency (Hz) 127 2000.4 5632.5 8174.2 11063 13192.1 Ermodal MAC 0 100 0	ed in the expan Table (Re Gain (dB) 133.5 132.4 131.2 127.6 125.8 129.4 C Matrix (1 2 0 0 100 0	2 9 0 1 1 1 1 1 1 1 1 1 1	atch ctor 5 4 1 1 1	ing) - - - - - -) => 70% 4 0 0	% Active V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V S S 2 2
put Parameters	Summary different Mode 0 1 2 3 Unte 0 1 2 3	of all the extracted modes to be include E Selection Frequency (Hz) 127 2000.4 5632.5 8174.2 11063 13192.1 Ermodal MAC 0 100 0 0 1	ed in the expan Table (Re Gain (dB) 133.5 132.4 131.2 127.6 125.8 129.4 C Matrix (100 0 0 100 1 33	2 9 0 1 1 1 1 1 1 1 1 1 1	atch ctor 3 4 1 1 3 100	ing) - - - - - -	4 0 0 1 0	Active Image: Constraint of the second se
tput Parameters	Summary different f Mode 0 1 2 3 4	of all the extracted modes to be include E Selection Frequency (Hz) 127 2000.4 5632.5 8174.2 11063 13192.1 Ermodal MAC 0 100 0 0 1 0 1 0	ed in the expan Table (Re Gain (dB) 133.5 132.4 131.2 127.6 125.8 129.4 C Matrix (1 2 0 0 100 0 100 1 33 0 1 1	2 9 0 1 1 1 1 1 1 1 1 1 1	atch ctor 1 5 4 3 4 1 1 3 100 0	ing) - - - - - -	4 0 0 1 0 100	Active Image: Constraint of the second se
tput Parameters	Summary different f Mode 0 1 2 3 4	of all the extracted modes to be include E Selection Frequency (Hz) 127 2000.4 5632.5 8174.2 11063 13192.1 Ermodal MAC 0 0 100 0 1 0 5	ed in the expan Table (Re Gain (dB) 133.5 132.4 131.2 127.6 125.8 129.4 C Matrix (1 2 2 0 0 0 100 0 0 100 1 3 0 1 2 5	sion. 2f. Ma 3.14 11.43 10.66 13.2 12.74 10.24 %)	atch ctor 1 5 4 1 1 1 3 1 1 1 3 100 0 2	ing) - - - - -	4 0 0 1 0 100 19	Active Image: Constraint of the second sec
tput Parameters	Summary different f Mode 0 1 2 3 4 5	of all the extracted modes to be include E Selection Frequency (Hz) 127 2000.4 5632.5 8174.2 11063 13192.1 Ermodal MAC 0 0 100 0 1 0 5	ed in the expan Table (Re 133.5 132.4 131.2 127.6 125.8 129.4 C Matrix (1 2 2 0 0 100 0 100 100 1 3 0 11 2 5 ection Table and	sion. 2. 2. 3.14 11.4: 10.6: 13.2 12.7: 10.2: %)	atch ctor 1 5 4 1 1 3 100 0 2 modal f	ing) - - - - - - -	4 0 0 1 0 19 //atrix	Active Image: Constraint of the second se

S60



S60

6 Application/Diagnostics

Critical acoustic

10

Frequency [Hz]

-

cancellation

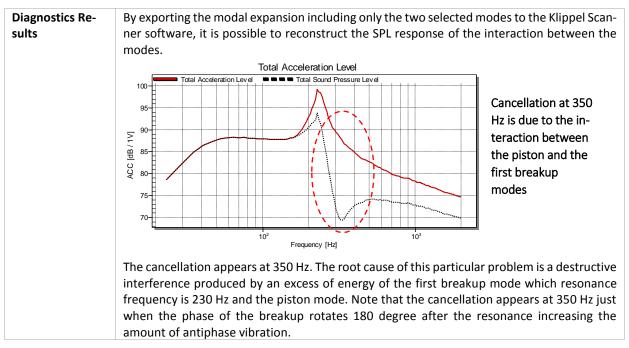
80-75-70-65-

60-

55-

10

Higher Modal Analysis - HMA (Pre-Release)


6 Application/Diagnostics

HMA Results for Using the HMA module, the following dominant modes are found. More modes with lower the dominant energy can be extracted by increasing the numbers of groups to find the modes. In this case modes found the cancellation effect is clearly an affect produced by dominant modes. Accumulated Acceleration Level @1m @1V on axis Hmod_2 Hmod_7 Hmod_3 TOTmeasured Hmod 0 Hmod 1 Hmod_4 Hmod_5 Hmod_6 TOTmod KLIPPEL 95 90 85 80 留 75 AAL 70 65 60 55 50 10 ² Frequency [Hz] 10 ³ Selecting only To simplify the analysis, only two of them are retained in the expansion. This can be done two modes by selecting only the two modes from the selection list. Mode Selection Table (Ref. Matching) Mode Frequ ency (Hz) Gain (dB) Q-factor MAC > 7Activ <u>0</u> 35.6 118.4 6.25 **V** 146.4 92 13.22 2 227.4 117.4 11.88 . 276.8 107.4 12.54 <u>3</u> <u>4</u> 447.7 102.6 8.07 113.3 5 745.5 8.12 109.3 13.66 839.6 <u>6</u> 1434.8 119.1 2.5 7 Accumulated Acceleration Level @1m @1V on axis Hmod_0 N/A 1 Hmod_2 N/A_3 N/A_4 N/A 5 N/A 6 — N/A 7 TOTmeasured TOTmod KLIPPEL 95 90 85 80 ଞ୍ 75 AAL 70 65 60 55 50 10 ² Frequency [Hz] 10³

Higher Modal Analysis - HMA (Pre-Release)

Find explanations for symbols at: http://www.klippel.de/know-how/literature.html Last updated: June 07, 2019

