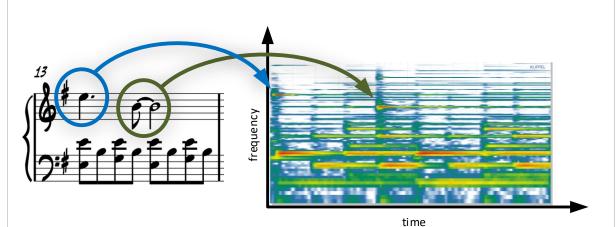
# **TFA Time Frequency Analysis**

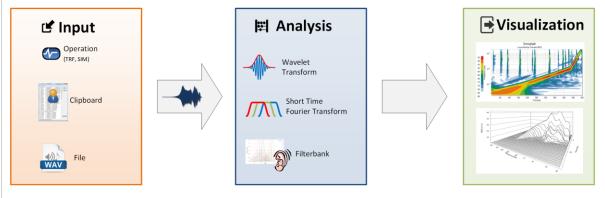
Software of the KLIPPEL R&D and QC SYSTEM (Document Revision 1.2)

# **FEATURES** Wavelet transform Filter bank Short-time Fourier transform (STFT) • High resolution over-laced analysis 3D Display (time slices) 250 Time [ms] Waterfall spectrum Spectrogram Group Delay Signal Characteristics (peak, bottom, -30 rms, crest, etc.) -50 -60 **APPLICATION** 3D defect analysis (Rub & Buzz) • 5.0×10 f [Hz] Detecting acoustical and mechanical resonators (room modes, rocking modes)

 Visualizing Harmonic and Intermodulation Distortion


#### DESCRIPTION

Time Frequency Analysis is a processing module that visualizes the characteristics of an audio signal over time and frequency.


Processing is based on three different methods (Wavelet Transform, Short Time Fourier Transform, Filter bank) and can be applied to any kind of time signal e.g. from a measurement operation or an external wav-file.

# **1** Principle

The Time Frequency Analysis is a calculation technique that provides a detailed view on the behavior of an audio signal. The method analyzes energy density in both frequency and time simultaneously. Similar to a music sheet it visualizes which frequency comes at which time.



Based on three different methods, the Wavelet Transform (WT), the Short Time Fourier Transform (STFT), or a Bark scaled Filter Bank Transform (FBA), the module decomposes the input signal and visualizes the signal characteristics over frequency and time.



# 2 Calculation Methods

#### 2.1 Wavelet Transform (WT)

The Wavelet Transform is an analysis technique that correlates a signal with specified basic functions, so called Wavelets. Depending on the frequency, the length of the wavelet varies to optimize the relation between time and frequency resolution for each frequency band.

| Basic Wavelet<br>Transform [1]    | $W_{x}^{\Psi}(a,b) = \frac{1}{\sqrt{ a }} \int_{-\infty}^{\infty} x(t) \psi^{*}\left(\frac{t-b}{a}\right) dt$ |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------|--|
|                                   | x(t): signal in time domain                                                                                   |  |
|                                   | $ \psi^*\left(\frac{t-b}{a}\right) $ : conjugate complex wavelet function<br>a, b: scaling parameters         |  |
| Complex Gaussian<br>Morlet Mother | The analysis uses the complex Gaussian Morlet Mother Wavelet which is represented in time domain by           |  |
| Wavelet – Time<br>Domain [2] [3]  | $\psi(t) = \frac{1}{\sqrt{\pi B}} e^{j\omega_0 t} e^{-\frac{t^2}{B}}$                                         |  |
|                                   | and frequency domain by                                                                                       |  |

KLIPPEL R&D System

|                                     | with $\Psi(\omega) = e^{-(\omega - w_0)^2 \frac{B}{4}}$ $B = \frac{4}{(\omega_0 B W)^2}$ |  |
|-------------------------------------|------------------------------------------------------------------------------------------|--|
|                                     | $B$ :Bandwidth Parameter $\omega_0$ :Wavelet Centre Frequency $BW$ :Bandwidth in Octaves |  |
| Energy of the wavelet transform [5] | The Energy density function is defined by:<br>$E_x^{\psi}(f,t) =  W_x^{\psi}(f,t) ^2$    |  |

#### 2.2 Short Time Fourier Transform (STFT)

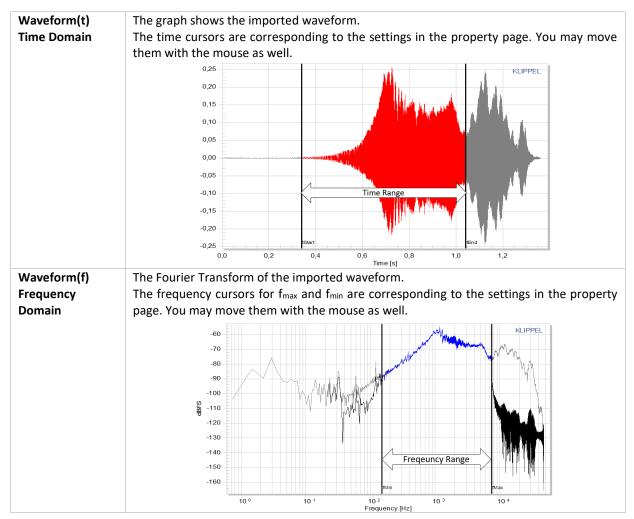
The Short time Fourier transform uses a window function that is shifted successively over a time signal. Calculating the Fourier Transform of each windowed section provides the spectral information at each time. Limited by the uncertainty relation the results of this method are a compromise between frequency resolution and time resolution. The Energy density function over time and frequency is defined by:

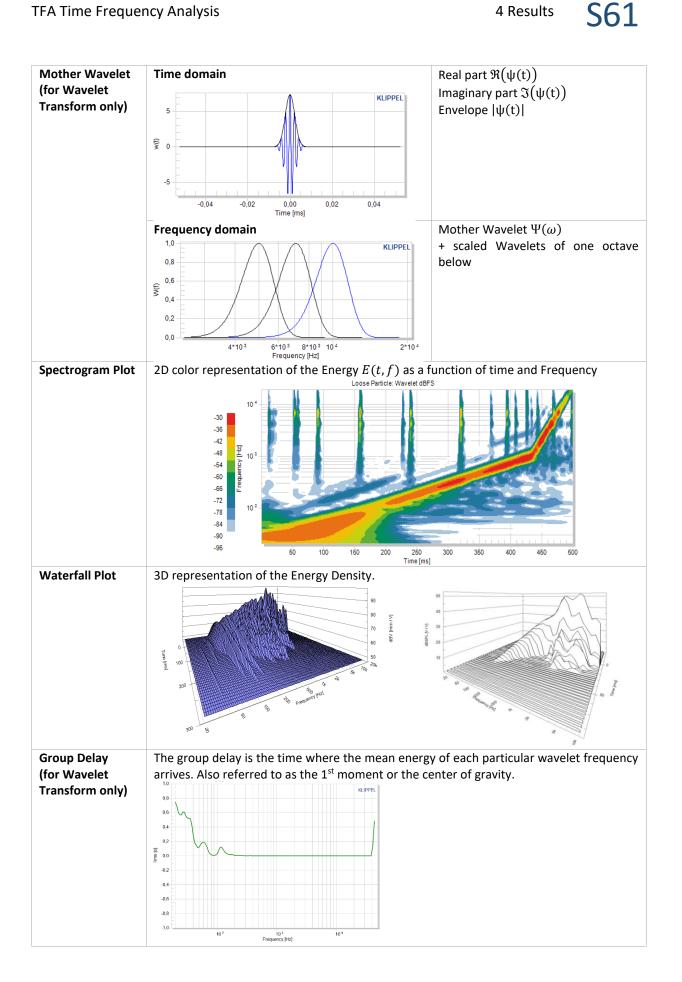
$$E(t,f) = \left| \int_{-\infty}^{\infty} e^{-j2\pi f\tau} x(\tau) h(\tau-t) d\tau \right|^2$$

#### 2.3 Filter Bank (FBA)

Another method to separate the spectral components is set of FIR-filter, which provides high time resolution.

# **3** Parameters

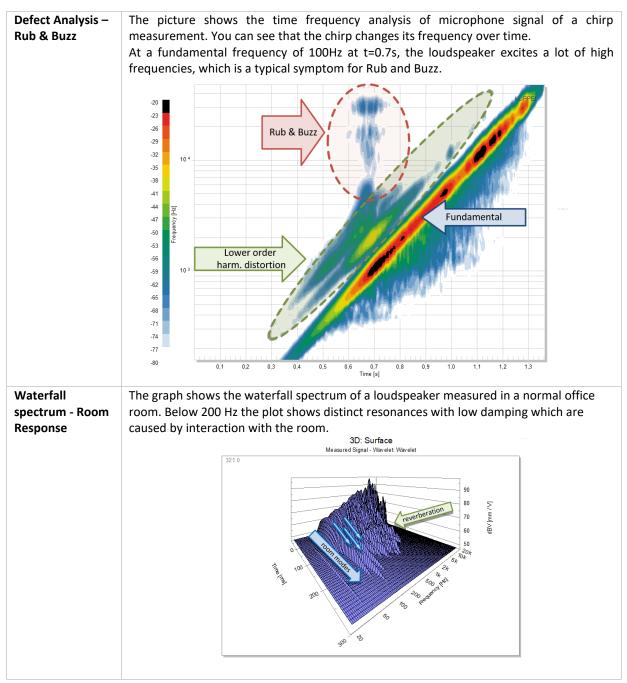

| 3.1 Input         |                                                                                                                                                                                                       |                                                                                                       |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Select            | The Source of th                                                                                                                                                                                      | e wave data has to be specified. Further Parameters appear                                            |
|                   | depending on sele                                                                                                                                                                                     | cted source.                                                                                          |
|                   | File                                                                                                                                                                                                  | Absolute or relative path to a wave file.                                                             |
|                   | Directory                                                                                                                                                                                             | Absolute or relative path to a directory containing wave files.                                       |
|                   | Clipboard                                                                                                                                                                                             | Paste waveform curve from other dB-Lab operations.                                                    |
|                   | Operation                                                                                                                                                                                             | Import waveforms from other measurement.                                                              |
|                   | Imported                                                                                                                                                                                              | Select data which is already imported.                                                                |
| 3.2 Processing    |                                                                                                                                                                                                       |                                                                                                       |
| Analysis Method   | Wavelet <sup>-</sup>                                                                                                                                                                                  | ts the time-frequency analysis method to calculate the results.<br>Transform<br>The Fourier Transform |
|                   | Filter Ban                                                                                                                                                                                            |                                                                                                       |
| Range Settings    | <ul> <li>Parameter for selecting the frequency and time range of the signal for the analysis</li> <li>Start Time</li> <li>End Time</li> <li>Frequency Minimum</li> </ul>                              |                                                                                                       |
|                   | Frequence                                                                                                                                                                                             | y Maximum                                                                                             |
| Wavelet Transform |                                                                                                                                                                                                       |                                                                                                       |
| Bandwidth         | This parameter defines the time- and frequency resolution ratio. E.g.: more Wavelets dividing one octave correspond to an increasing frequency resolution in return for a decreasing time resolution. |                                                                                                       |


| Short-Time Fourier Tr | ansform                                                                    |  |
|-----------------------|----------------------------------------------------------------------------|--|
| Window Type           | Window function which is used for the STFT (e.g. Hann, Rectangular, Tukey) |  |
| Window Time           | Length of the time windows                                                 |  |
| Window Overlap        | Overlapping of the windows in percent                                      |  |
| Filter Bank           |                                                                            |  |
| Number of Filters     | Number of filter bands used for the analysis                               |  |

#### 3.3 Display

| Normalization                       | None                                                                   | No normalization                                 |
|-------------------------------------|------------------------------------------------------------------------|--------------------------------------------------|
|                                     | To 0 dB                                                                | Maximum is set to 0 dB                           |
|                                     | To Peak Time Value                                                     | Each frequency band is normalized to its maximum |
|                                     | To fundamental                                                         | Result is normalized to t = 0 s                  |
| SPL Range                           | Displayed SPL range in dB                                              |                                                  |
| Result Max                          | maximum displayed SPL value in dB                                      |                                                  |
| 3D: Number of Slices                | Visualized time slices                                                 |                                                  |
| Spectrogram:                        | Selection of the colormap of the spectrogram plot                      |                                                  |
| Colormap                            |                                                                        |                                                  |
| Spectrogram:                        | Definition of the color step size either low, mid, high or fixed in dB |                                                  |
| Number of Colors                    |                                                                        |                                                  |
| Spectrogram:<br>Highlight Max Value | Checkbox to highlight the maximum value of the spectrogram plot        |                                                  |

# 4 Results








| Signal<br>Characteristics           | of the input waveform. This result                             | al characteristics (e.g. mean, rms, peak, etc.)<br>window is showing these characteristics over<br>signal characteristics are shown in the <b>Fehler!</b> |
|-------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                                                                |                                                                                                                                                           |
|                                     | y(t) Input Signal Characteristics                              | y(t) Input Crest Factor                                                                                                                                   |
|                                     | 0.6                                                            | 9 9                                                                                                                                                       |
|                                     | 0.4                                                            | 8                                                                                                                                                         |
|                                     | 02                                                             | 7 99 6 20 Strate                                                                                                                                          |
|                                     | 0                                                              | 5 000-                                                                                                                                                    |
|                                     | -0.2                                                           | 95 4 -35 <sup>8</sup>                                                                                                                                     |
|                                     | -0.4                                                           | 2 45                                                                                                                                                      |
|                                     | -0.6                                                           | 1 .50                                                                                                                                                     |
|                                     | 0.0 0.2 0.4 0.6 0.8 1.0 1.2<br>Time / s                        | 0.0 0.2 0.4 0.6 0.8 1.0 1.2<br>Time / s                                                                                                                   |
|                                     | Parameter                                                      | Value Unit                                                                                                                                                |
|                                     | y(t) Input Waveform                                            |                                                                                                                                                           |
|                                     | Length                                                         | 3.49995 s                                                                                                                                                 |
|                                     | Channels                                                       | 1                                                                                                                                                         |
|                                     | Samples                                                        | 154348                                                                                                                                                    |
|                                     | Sample Frequency                                               | 44.1 kHz                                                                                                                                                  |
|                                     | Bit depth                                                      | 16                                                                                                                                                        |
|                                     | Signal Characteristics (Fu                                     | ll Signal)                                                                                                                                                |
|                                     | Peak                                                           | 0.84918                                                                                                                                                   |
|                                     | Mean                                                           | 0.00003                                                                                                                                                   |
|                                     | Bottom                                                         | -0.99997                                                                                                                                                  |
|                                     | RMS                                                            | 0.18507                                                                                                                                                   |
|                                     | Abs. Peak                                                      | 0.99997                                                                                                                                                   |
|                                     | Crest Factor                                                   | 14.65298 dB                                                                                                                                               |
|                                     | Kurtosis                                                       | 3.96700                                                                                                                                                   |
| PDF Probability<br>Density Function | The graph shows the probability der<br>Probability Density Fur | nction of y(t)                                                                                                                                            |
|                                     | 16<br>14<br>12                                                 |                                                                                                                                                           |
|                                     |                                                                |                                                                                                                                                           |

# **5** Applications



# 6 References

- P. Goupillaud, J. Morlet and A. Grossmann, "Cycle-Octave and related transforms in seismic signal analysis," *Geoexploration*, vol. 23, pp. 85-102, April 1984.
- [2] D. B. Keele, "Time-Frequency Diskplay of Electroacoustic Data Using Cycle-Octave Wavelet Transforms," in *Audio Engineering Society Convention 99*, 1995.
- [3] S. J. Loutridis, "Decomposition of Impulse Responses Using Complex Wavelets," J. Audio Eng. Soc, vol. 53, no. 9, pp. 796-810, September 2005.

- [4] S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," *IEEE Transactions on Pattern Analysis and Machine Intelligence,* Bd. 11, Nr. 7, pp. 674-693, #jul# 1989.
- [5] O. Rioul und M. Vetterli, "Wavelets and signal processing," *IEEE Signal Processing Magazine*, Bd. 8, Nr. 4, pp. 14-38, #oct# 1991.
- [6] L. Cohen, Time-Frequency Analysis, Prentice Hall PTR, 1995.

Find explanations for symbols at: http://www.klippel.de/know-how/literature.html Last updated: June 04, 2021

