Displacement Limits due to Driver Nonlinearities

Application Note to the KLIPPEL R\&D (Document Revision 1.2)

DESCRIPTION

The physical causes limiting the voice coil peak excursion $X_{\text {max }}$ are represented by separate displacement limits $X_{B I}, X_{C}, X_{L}$ and X_{D} corresponding to the dominant driver nonlinearities in the motor, suspension and radiation. These limits are derived from the large signal parameters of the driver measured by the Linear Parameter Measurement (LPM) and Large Signal Identification (LSI) using admissible thresholds of parameter variation defined by the user. The relationship between the separate excursion limits and the peak displacement $X_{\max }$ determined by the performance-based method (AN 4) is discussed.

CONTENTS:

1 Limits of Voice Coil Displacement. 2
2 Using the KLIPPEL R\&D System 5
3 Setup Parameters for the LPM and LSI Module6
4 Example 7
5 More Information 9

1 Limits of Voice Coil Displacement

Physical Causes	The maximal peak displacement $X_{\max }$ is limited by at least three factors 1) Excessive decrease of mechanical compliance of the mechanical suspension (mainly caused by the natural limiting of the spider) 2) Voice coil excursion capability (mainly limited by hitting the back plate) 3) Excessive, subjectively unpleasant, signal distortion in the sound pressure output depending on speaker nonlinearities, intended application, nature of excitation signal and audible acuity of the listener These limiting factors may be represented by separate displacement limits - X_{C} represents mechanical loading imposed to suspension and tolerable distortion due to $C_{m s}(x)$ nonlinearity, - $X_{\text {clip }}$ represents free moving range without clipping, - $X_{B I}$ represents tolerable distortion due to $B I(x)$-nonlinearity, - X_{L} represents tolerable distortion due to $L_{e}(x)$ nonlinearity, - X_{D} represents tolerable distortion due to Doppler nonlinearity.
X_{c}	The displacement limit X_{C} considers the critical mechanical strain of suspension and audible distortion generated by nonlinear stiffness characteristic $K_{m s}(x)$ or from its counterpart, the compliance characteristic $C_{m s}(x)$. Defining an admissible compliance ratio $\begin{equation*} C_{\min }\left(X_{C}\right)=\min _{-X_{C}<x<X_{C}}\left(\frac{C_{M S}(x)}{C_{M S}(0)}\right) * 100 \% \tag{1} \end{equation*}$ which is the ratio of the minimal value of the compliance within the working range $\pm \mathrm{X}_{\mathrm{C}}$ and the value at the rest position $x=0 . X_{C}$ is implicit in the equation and can be found in the nonlinear $\mathrm{C}_{\mathrm{ms}}(x)$-characteristic by using a pre-defined threshold $\mathrm{C}_{\text {min }}$. A symmetrical compliance characteristic will produce about 10% total harmonic distortion at a threshold $\mathrm{C}_{\text {min }}=75$ \%.
$\mathbf{X c l i p}$	The maximal displacement due to mechanical clipping may be derived from the geometry of the moving coil assembly, and may be verified by practical experiments. In a well-designed loudspeaker, $X_{\text {clip }}$ should always be higher than X_{C} to avoid a mechanical damage of the voice coil former.
X_{BI}	The maximal displacement $X_{B 1}$ limited by excessive motor distortion may be obtained from the nonlinear force characteristic $\mathrm{Bl}(\mathrm{x})$. We define the minimal force factor ratio $\begin{equation*} B l_{\min }\left(X_{B l}\right)=\min _{-X_{B<}<x<X_{B l}}\left(\frac{B l(x)}{B l(0)}\right) * 100 \% \tag{2} \end{equation*}$ which is the ratio of the minimal force factor $B I(x)$ in the working range $\pm X_{B 1}$ referred to the $B l$-value at the rest position $x=0 . X_{B I}$ is implicit in the equation and can be found in the nonlinear $B I(x)$-characteristic after defining the threshold $B I_{\text {min }}$. The threshold $B I_{\text {min }}=82 \%$ will produce about 10% intermodulation distortion.

X ${ }_{\text {L }}$	The variation of the impedance versus displacement x is directly related to the magnitude of the intermodulation distortion generated in the current and in the radiated sound pressure output. Thus, the displacement limit X_{L} is defined implicitly by $Z_{\max }\left(X_{L}\right)=\max _{-X_{L}<x<X_{L}} \frac{\left\|Z_{e}\left(x, f_{2}\right)-Z_{e}\left(0, f_{2}\right)\right\|}{\left\|Z_{e}\left(0, f_{2}\right)\right\|} * 100 \%$ which is the ratio of the maximal variation of the electrical impedance at frequency f_{2} within the working range $-X_{L}<x<X_{L}$ and the impedance at the rest position $x=0$. To keep the parameter-based method consistent with the performance-based method, the frequency $f_{2}=8.5 f_{s}$ is coupled to the resonance frequency f_{s}. Approximating the impedance by $\begin{equation*} Z_{e}\left(x, f_{2}\right) \approx R_{e}+L_{e}(x) s_{2}+\frac{R_{2}(x) L_{2}(x) s_{2}}{R_{2}(x)+L_{2}(x) s_{2}} \tag{3} \end{equation*}$ where $s_{2}=2 \pi f_{2} j$ and using the power series expansion of the nonlinear characteristics $\frac{L_{e}(x)}{L_{e}(0)}=\frac{L_{2}(x)}{L_{2}(0)}=\frac{R_{e}(x)}{R_{e}(0)}=1+\frac{l_{1}}{L_{e}(0)} x$ with the linear coefficient I_{1} gives the displacement limit X_{L} explicitly $\begin{equation*} X_{L}=\frac{L_{e}(0)}{\left\|l_{1}\right\|} \frac{\left\|\mathrm{Z}_{e}\left(0, f_{2}\right)\right\|}{\left\|\mathrm{Z}_{e}\left(0, f_{2}\right)-R_{e}\right\|} \frac{Z_{\max }}{100 \%} \tag{4} \end{equation*}$ The threshold $Z_{\max }=10 \%$ will produce about 10% intermodulation distortion.
X_{D}	The displacement limit X_{D} considering the audibility of the Doppler effect can be calculated analytically giving accessible peak displacement due to Doppler $\begin{equation*} X_{D}=\frac{90.5 d}{f_{s}} \tag{5} \end{equation*}$ where X_{D} is in mm , resonance frequency f_{s} is in Hz and the modulation distortion d in percent at $f_{2}=8.5 f_{s}$. The threshold of $d=10 \%$ keeps the definition of X_{D} consistent with the performance based method. Only in drivers designed for extreme displacement the Doppler will limit the peak displacement $X_{\text {max }}$.
Practical Usage	1) Define the four thresholds $C_{\min ,}, B I_{\min ,} Z_{\max }$ and d according to the accessible mechanical load and the audibility of the distortion (or use the recommended values). 2) Measure the nonlinear characteristics compliance $C_{m s}(x)$, force factor $B I(x)$, and inductance $L_{e}(x)$ versus displacement x and the voice coil resistance R_{e}. 3) Determine the peak displacement X_{c}, X_{b}, X_{L} and X_{D} by using the driver parameters. 4) Determine the maximal displacement $X_{\text {clip }}$ limited by mechanical clipping, voice coil rubbing or other irregularities affecting moving capability 5) Specify the final limit value for voice coil displacement as the minimum value of all single peak displacements: $\operatorname{MINIMUM}\left(X_{C}, X_{B}, X_{L}, X_{D}\right)$

$\mathrm{X}_{\text {max }}$	displacement $X_{\text {max }}$ based on distortion measurement. The original method is based on assessing the total harmonic distortion only and fails for drivers having significant $\mathrm{Bl}(\mathrm{x})$ nonlinearity. An amendment suggests a two-tone signal for the measurement of the harmonics and intermodulation distortion. Although there are fundamental differences between the performance-based and the parameter-based approach, it is possible to keep both methods comparable by choosing corresponding distortion values d_{t}, d_{2} and d_{3} and thresholds $\mathrm{Bl}_{\text {min }}, \mathrm{C}_{\text {min }}, \mathrm{Z}_{\text {max }}$, d . To avoid any confusion it is recommended to use the expression Voice Coil Peak Displacement and the symbol $X_{\text {max }}$ for the results of the performance-based approach only. The minimum of Displacement limits represents the physical cause for limiting $X_{\text {max }}$.

2 Using the KLIPPEL R\&D System

Requirements	- Distortion Analyzer + PC - dB-Lab - Linear Parameter Measurement (LPM) software module - Large Signal Identification (LSI) software module (either "LSI Woofer" or "LSI Woofer+Box") - Laser sensor head + controller
Setup	Mount the driver in the laser stand and connect the terminals with SPEAKER 1. Switch the power amplifier between OUT1 and connector AMPLIFIER. Adjust the laser head to a white dot on the diaphragm.
Preparation	Create a new object DRIVER based on the template LSI Displacement Limits AN 5 provided in the dB-Lab object templates.
$1^{\text {st }}$ Measurement	If you know the force factor $\mathrm{BI}(\mathrm{x}=0)$ at the rest position of the driver you may skip this first measurement. Alternatively you may use the LPM $1^{\text {st }}$ measurement with the setup parameters provided. 1) Select and start the measurement LPM $1^{\text {st }}$ measurement Make sure the signal level is appropriate for an LPM measurement. Adjust level, and repeat if necessary (see LPM Specification). 2) Open the property page IMPORT/EXPORT and export all parameter to the clipboard.
$2^{\text {nd }}$ Measurement	1) Select the "LSI $2^{\text {nd }}$ Measurement" 2) Open property page IM/EXPORT. Import the linear parameters from the LPM $1^{\text {st }}$ measurement, click import from clipboard. Alternatively, specify $\mathrm{Bl}(\mathrm{x}=0), \mathrm{M}_{\mathrm{ms}}$ and $\operatorname{Re}\left(\Delta T_{\mathrm{V}}=0\right)$ manually. 3) Start the measurement. Listen for excessive distortion and in case of a mechanical defect assign $\mathrm{X}_{\text {clip }}=\mathrm{X}_{\text {peak }}$. Click "Finish" after completion of the nonlinear mode. 4) Open the Window "Nonlinear Parameters". This window specifies the displacement according to the recommended specification. By default, the LSI uses the recommended thresholds for calculation of the displacement limits. For more information, see below, "Setup Parameters" - " 2 nd Measurement".

3 Setup Parameters for the LPM and LSI Module

Template	By creating a new Object, using the object template LSI Displacement Limits AN 5 in dB-Lab, the two measurements (LPM and LSI) are already customized for the assessment of $X_{\text {max }}$. If this object template is not available, you may generate an LPM and an LSI measurement separately, using the following setups.
$1^{\text {st }}$ Measurement	Create an empty object named Displacement Limits. Assign an operation LPM Linear parameter measurement to this object. 1) On the property page Stimulus, set resolution of $1 / 16^{\text {th }}$ octave of the multi-tone signal starting from 20 Hz up to maximal frequency 2000 Hz . Set number of averaging to 8. 2) Set stimulus to $0.1 \mathrm{~V}(\mathrm{RMS})$ at the speaker terminals. You might need to modify this according to your speaker. On property page Input select SPEAKER 1 and enable the Laser as external sensor.
$2^{\text {nd }}$ Measurement	1) Assign an operation LSI Large Signal Parameters to the object Displacement Limits. 2) On the property page Protection confirm that the settings are appropriate for your driver. If you change any of the protection limits, please note that the protection limits should be lower than the threshold limits (see below). On the property page Conditions, select Finish task after: Nonlinear Mode. Optionally, you can change the thresholds at which the displacement limits are specified. To do that: 1) Select the property page Series. In the Displacement Limits group, click on Edit 2) Edit the thresholds according to your needs. The protection limits for $\mathrm{Bl}_{\mathrm{lim}}$ and $\mathrm{C}_{\text {lim }}$ should be about 20% lower than the thresholds. This ensures accurate parameters in the displacement limit range. The Threshold editor dialog displays a warning message when the selected thresholds conflict with the current protection limits. You might need to adjust the protection settings accordingly. The thresholds can be modified after the measurement ran. However, when you need to change the protection parameters, you also need to run the measurement again.

4 Example

This example explains how the displacement limits can be calculated manually. The current version of the LSI does the calculations automatically. You find the automatically calculated peak displacements for each nonlinearity in the window Nonlinear Parameters.
Linear
Parameters

The LPM $1^{\text {st }}$ measurement provides the linear parameters of the driver. The force factor $\mathrm{Bl}(0)$, the moving mass $M_{m s}$ and the voice coil resistance R_{e} are exported to the $2^{\text {nd }}$ measurement. For manual calculation, the resonance frequency f_{s} is required for the assessment of X_{L} and X_{D} due to inductance nonlinearity and Doppler effect.
X_{B}
The LSI $2^{\text {nd }}$ measurement provides the nonlinear parameters of the driver. Open the window $\mathrm{BI}(\mathrm{x})$ and read the peak displacement X_{B} where the $\mathrm{BI}(\mathrm{x})$ is reduced to the value $\mathrm{BI}_{\text {min }}$ times the value $\mathrm{BI}(0)$ at the rest position.

Force factor $\mathrm{BI}(\mathrm{X})$

For the particular driver in the example the peak displacement $X_{B}=1.38 \mathrm{~mm}$ due to force factor using a limit $\mathrm{Bl}_{\min }=82 \%$.
X_{c}
Open the window $C_{m s}(x)$ and read the peak displacement X_{C} where the $C_{m s}(x)$ is reduced to the value $C_{\text {min }}$ times the value $C_{m s}(0)$ at the rest position.

Mechanical compliance Cms

	For the example driver the peak displacement X_{C} is 0.98 mm using $\mathrm{C}_{\text {min }}=75 \%$.
X	Open the window Nonlinear Parameters and read the linear coefficient $\mathrm{L}_{1}=0.05 \mathrm{mH} / \mathrm{mm} .$ Open the window Parameters at $X=O$ and read the parameters $\begin{aligned} & \mathrm{R}_{\mathrm{e}}=7.5 \mathrm{Ohm}, \\ & \mathrm{~L}_{\mathrm{e}}(0)=0.5 \mathrm{mH}, \\ & \mathrm{R}_{2}(0)=1 \mathrm{Ohm}, \\ & \mathrm{~L}_{2}(0)=0.01 \mathrm{mH} \\ & \mathrm{f}_{\mathrm{s}}=113 \mathrm{~Hz} . \end{aligned}$ Use Eq. (3) to calculate $\left\|Z_{e}\left(0, f_{2}\right)\right\|=8.07$ Ohm and $\left\|Z_{e}\left(0, f_{2}\right)-R_{e}\right\|=3$ Ohm. Use Eq. (4) to calculate $X_{L}=2.7 \mathrm{~mm}$.
X	For a resonance frequency $f_{s}=113 \mathrm{~Hz}$ and a limit of $d=10 \%$ the Doppler effect will limit the peak displacement to $X_{D}=8 \mathrm{~mm}$.
$\mathbf{X}_{\text {clip }}$	During the LSI identification no excessive distortion is generated that is caused by hard limiting of the voice coil displacement. Thus $X_{\text {clip }}>2 \mathrm{~mm}$.
Specification	The maximal peak displacement is limited by stiffness nonlinearity $X_{C}=0.98 \mathrm{~mm}$ whereas $\begin{aligned} & X_{B I}=1.38 \mathrm{~mm} @ B_{\min }=82 \% \\ & X_{C}=0.98 \mathrm{~mm} @ C_{\text {min }}=75 \% \\ & X_{L}=2.7 \mathrm{~mm} @ Z_{\max }=10 \% \\ & X_{\text {clip }}>2 \mathrm{~mm} \\ & X_{D}=8 \mathrm{~mm} @ d=10 \% \end{aligned}$

5 More Information

Papers	W. Klippel, "Assessment of Voice Coil Peak Displacement $X_{\text {max }}$, paper in presented at the $112^{\text {th }}$ Convention of the Audio Engineering Society, 2002 May 10-13, Munich, Germany. Updated version on Updated version on http://www.klippel.de/know- how/literature/papers.html
Application Notes	AN 4 "Measurement of Peak Displacement $X_{\text {max }}$ (performance-based method)"
Related Specification	"LPM",S1 "DIS", S4
Software	User Manual for KLIPPEL R\&D SYSTEM

Find explanations for symbols at:
http://www.klippel.de/know-how/literature.html
Last updated: 08.01.16

