Far Field Measurement using Micro- AN 69 phone Arrays

Application Note to the KLIPPEL R\&D and QC SYSTEM (Document Revision 1.1)

FEATURES

- Polar measurement in far field
- Microphone multiplexing
- Fast, automatic measurement
- Turntable control
- Integrated in Klippel measurement system

DESCRIPTION

Measuring the directivity of audio devices high amounts of data need to be determined. To collect these data automatically, usually one or two turntables are used to rotate the loudspeaker. As an alternative to rotating the loudspeaker, the radiation pattern can be measured using microphone arrays in combination with a multiplexer.

This application note shows how to perform a directivity measurement using the POL and TRF Modules of the Klippel R\&D System in combination with microphone multiplexing. It gives detailed instructions about the complete measurement process from the data acquisition to the visualization of the directivity data.

CONTENT

1 Overview 2
2 Requirements 3
3 Performing a measurement 4
4 Data Processing 8
5 Coordinate System 8
6 References 9
7 Trouble Shooting 10

1 Overview

1.1 Principle

1 - Measurement/ Data acquisition

The $1^{\text {st }}$ step is an automatic measurement. During the scanning process, the full automatic measurement system is switching the multiplexers, moving turntable and performing TRF operation at each measurement point.
2 - Data Container
After the measurement, all curves are saved in the database. The extracted data is saved with the coordinates in a data container. In addition each performed TRF operation can be stored in the database as well.
3 - Visualization
In the visualization module the directivity of the DUT can be analyzed. The module provides common far field characteristics like sound power, balloon plot, polar plot, contour plot etc.

1.2 Measurement Results

SOUND PRESSURE LEVEL		Sound pressure level over frequency at all measurement positions.
SOUND POWER		Total radiated Sound Power of the device under test. Sound power characterizes the integrated sound pressure level over all radiation angles.
DIRECTIVITY INDEX		The Directivity Index summarizes the relation between the sound pressure levels of all radiation angles compared to the On-Axis sound pressure level. An omnidirectional source has a directivity index of 0 .

2 Requirements

2.1 Hardware

DA2	T4	Distortion Analyzer 2 is the hardware platform for the measurement modules performing the generation, acquisition and digital signal processing in real time [3]	H1
Multiplexer (BNC)		8 channel multiplexing hardware that is directly controlled by the Klippel Software. [2]	A8
Microphones		Free field microphone with omnidirectional directivity characteristic over the desired measurement bandwidth.	A4
Amplifier		Amplifier with a flat frequency response over the desired measurement bandwidth	
Turntable (optional)	- -7	Turntable to rotate the device under test for a two-dimensional scan. (e.g. LinearX LT360) [9]	
2.2 Software			
TRF MODULE (S7)	The Transfer function (TRF) is a dedicated PC software module for measurement of the transfer behavior of a loudspeaker. [1]		
KLIPPEL ROBOTICS	The Robotics Software manages the data acquisition. That means it moves the turntables Hardware, switches the multiplexers and performs the measurements.		

```
VISUALIZATION Software module that visualizes the directivity data e.g. contour plot, sound power,
SOFTWARE
```

Software module that visualizes the directivity data e.g. contour plot, sound power, polar plot, etc. [4]

3 Performing a measurement

3.1 Introduction

3.2 Measurement Setup

3.3 Start Klippel Robotics and create a new measurement

3.4 Hardware Setup

1) Open Hardware Setup:

Click: "Hardware Setup" to open the hardware dialog window.

2) Configure Hardware

A - Microphone-Array

1) No additional hardware is required.
2) Make sure that no device is selected

-

In case the Initializing has failed, please check the Trouble Shooting below.

3) Initialize Turntable (only for Turntable usage)

Click the "Init"-Button of this dimension.

B - Microphone-Array + Turntable

1) Position the Mic-Array over the theta angle
2) Select for Dim 2 the turntable (e.g. LinearX,ET250)
3) Dim1 and Dim 3 must have no device

4) Close Hardware Dialog

Click "OK" to confirm your Settings

3.5 Measurement Operation - TRF Transfer function

1) Open Database:	2) Select operation	3) Property Page
Click "Edit Setup" to open the database.	Select the operation: "TRF transfer function "	Open Property Page to configure the measurement operation.

4) Configure Stimulus

Select the "Stimulus" tab and define:

- "Speaker 1 (via OUT1)"

Configure Parameters:

- Frequency Range $\left(\boldsymbol{f}_{\text {min }}, \boldsymbol{f}_{\text {max }}\right)$
- Frequency Resolution
- Input Voltage

6) Switch Multiplexer and Run Operation
7) Click the manual switch button of the MUX.
8) Route "BUS \boldsymbol{A} " to "CH $\mathbf{1}$ " to connect Mic1.
9) If required, turn IEPE-Supply on by using the switches on the rear side

[^0]Run the TRF operation by clicking on the green arrow.

5) Define Channels and $H(f)$

1) Select the "Input" tab and define:

- Channel 1 - (Voltage Speaker 1) Us
- Channel 2 - IN 2 (Mic)

2) Insert the calibration factor of the mic

3) Select the "Processing „Tab and define: $\boldsymbol{H}(f)=$ IN2 / Us

In case the sensitivity values of the different microphones have huge differences, it is recommended using for each microphone a separate TRF Operation with a calbration factor or curve

7) Check SNR

Open the Result Windows " $\boldsymbol{Y} \mathbf{1}(f)$ Spectrum" and " $\boldsymbol{Y}(f)$ Spectrum".
And check if the microphone signal has at least 20 dB Signal to Noise Ratio (SNR) in the passband.

If the SNR is less, increase the voltage of the Stimulus or apply averaging.
Repeat the same check for the other microphones
("BUS A" to "CH 2-4")

3.6 Measurement Array

3) Measurement Operation and Multiplexer settings

Step 1: Reset Configuration

1) Open the Category Measurement Operation
2) Click Delete all Operations to reset the Operation List

Step 2: Select Measurement Module

1) Select "New Operation" in the Operation List
2) Click Update Database to refresh the list of Measurement Modules
3) Select the Module for the measurement e.g. "TRF transfer function"

\square| | MEASUREMENT OPERATION |
| :--- | :--- |
| OperationList | New Operation |
| \square Delete Operation 2) | |
| \square Delete All Operatiens | |
| Update Database | \square |
| Measurement Module | TRF transfer function |
| Use Multiplexer | \square |
| Save Operation in List | \square |

Step 4: Microphone Position + Save Configuration

1) Specify the microphone position using the Parameter Mic Position Offset. It defines the angle offset of phi and theta. Mic1 is On-Axis so the Offset is [0 0]
(Example.: mic at $\theta=45^{\circ}, \varphi=10^{\circ} \rightarrow$ offset $=\left[\begin{array}{ll}45 & 10\end{array}\right]$)
2) Click Save in Operation List to store the current Setup

Step 3: Configure Multiplexer Settings

1) To add a switching configuration of a MUX click Use Multiplexer
2) Select in the list the MUX that should be switched or Update List to see all available Multiplexer

3) Click MUX-Activate to activate the multiplexer.
4) Adjust the switching configuration. For the Mic1 set: Mode: $\mathbf{1 \times 8}$,Ch.: $\mathbf{1}$ to $\mathbf{A} / \boldsymbol{B}$
5) If required, activate MUX IEPE-Supply
6) Click Switch Configuration to switch the MUX

Setup for other Microphones
Repeat step 2-4 for the other microphones

Use the following Settings:

	Mic. 2	Mic. 3	Mic. 4
MUX - Mode	1×8	1×8	1×8
MUX - Ch.	$2>$ A/B	$3>$ A/B	$4>$ A/B
Mic Position	$[300]$	$[600]$	$[900]$

3) Run Operation

Run the Measurement Array operation by clicking on the green arrow.

After running the Script the measurement points and the multiplexer settings are shown in a table in the Result window Measurement Coordinates.

3.7 Start Measurement

Close the database to get back to the Robotics and Press "Start"

Press "Continue" to Start the measurement.

4 Data Processing

5 Coordinate System

The POL measurement module is based on a spherical coordinates system, that is defined by the radius of the sphere r and the two angles, theta ϑ (off axis angle) and the phi φ (circular angle).

The orientation of the DUT is specified conform to IEC 60268-21. The reference Axis $\boldsymbol{n}_{\text {ref }}$ at $\vartheta=0^{\circ}$ defines the main radiation axis.

The orientation vector $\boldsymbol{O}_{\text {ref }}$ at $\varphi=0^{\circ}$ defines the orientation of the device under test. It usually points to the top the loudspeaker.

Dimension 1: Polar Angle Theta
The dimension of the $1^{\text {st }}$ turntable is specified as the polar angle theta. It defines the off axis angle.

Dimension 2: Circular Angle Phi
The dimension of the $2^{\text {nd }}$ turntable is specified as the azimuth angle phi. It defines the circular angle.

6 References

6.1	Related Modules	[1] Transfer function (TRF), Specification S7, 2016 Klippel GmbH, www.klippel.de [2] Multiplexer, Specification A8, 2016 Klippel GmbH, www.klippel.de [3] Distortion Analyzer 2, Specification H1, 2016 Klippel GmbH, www.klippel.de [4] Near Field Scanner 3D (NFS), Specification C8, 2016 Klippel GmbH, www.klippel.de
6.2	Manuals	[5] User Manual TRF Transfer function, included in dB-Lab Software installation
6.3	Standards	[6] IEC (E) 60268-21: Acoustical (Output based) Measurements, 2015 International Electrotechnical Commission [7] IEC 62777 Ed.1: Quality Evaluation Method for the Sound Field of Directional Loudspeaker Array System, 2014 International Electrotechnical Commission [8] CEA-2034: Standard Method of Measurement for In-Home Loudspeakers, 2013 Consumer Electronics Association
6.4	Other	[9] LinearX: LT 360 Precision Turntable, 2007 LinearX Systems Inc.

7 Trouble Shooting

7.1 Problems with LinearX Turntable - Error during Initialization

1) Linear is not connected

What to do?

1) Check power connection of LinearX Turntable
2) Check COM-connection of the Turntable
a. Check if the cable is correct connected to the Turntable

b. Check in the device manager if COM connector is available

4 Anschlüsse (COM \& LPT) Druckeranschluss (LPT1)
Kommunikationsanschluss (COM1) G USB Serial Port (COM3)
$\downarrow 4$ Audio-, Video- und Gamecontroller

LinearX turntable must be connected via the COM connector. The direct USB is not supported
2) Linear is connected to another port

What to do?

1) Read the port and the Serial number from the message box.
2) Insert the correct Port and Serial number into the Hardware Setup

Find explanations for symbols at:
http://www.klippel.de/know-how/literature.html
Last updated: January 26, 2017

[^0]: (1. For mode selection and IEPE DIP-switching, the MUX must be in I/O Mode. If it is not, reconnect the power supply[2].

