
  

 

 

Rocking Modes (Part 2: Diagnostics) 

William Cardenas, Wolfgang Klippel; Klippel GmbH, Dresden 01309, Germany 

The rocking behavior of the diaphragm is a severe problem in headphones, micro-speakers and other kinds of loudspeakers causing 

voice coil rubbing which limits the maximum acoustical output at low frequencies. The root causes of this problem are small 

imbalances in the distribution of the stiffness, mass and force factor in the gap. Based on lumped parameter modeling, modal 

decomposition and signal flow charts presented in a previous paper (Part 1) this paper here focusses on the practical measurement 

using laser vibrometry, parameter identification and root cause analysis. New characteristics are presented which simplify the 

interpretation of the identified parameters. The new technique has been validated by numerical simulations and systematic 

modifications of a real transducer. The diagnostic value of the new measurement technique has been illustrated on a transducer 

used in headphones.  

0 INTRODUCTION 

Most micro-speakers, headphones and some cone 

loudspeakers exhibit undesired rotational vibration 

patterns called rocking modes [3]. Rocking modes are 

caused by inhomogeneous distribution of mass, stiffness 

and force factor shifting the center of gravity, stiffness and 

electro-dynamical excitation away from the pivot point 

which is the cross point of the nodal lines of the two 

rocking modes. This imbalance generates moments 

exciting the rocking resonators to significant amplitudes. 

A detailed theoretical analysis and an extended lumped 

parameter model using three state variables (transversal 

displacement x0, tilting angles τ1 and τ2) have been 

introduced in a previous paper [1].  

This paper here focusses on the detection and 

identification of the root causes to provide meaningful 

information to eliminate the problem. Currently there are 

no diagnostic tools available for this purpose. The 

measurement of the mechanical vibration by laser 

scanning and post processing of the data by pressure 

related decomposition [2] and experimental modal 

analysis allow to separate the rocking behavior from the 

desired transversal vibration, but to provide no information 

on the magnitude and location of the imbalances.  This 

paper is organized as follows: First, a short summary of the 

physical mechanisms and the consequences of each root 

cause are described based on the lumped parameter model 

presented in [1]. In the second chapter, the system 

identification, the experimental conditions of the 

measurement technique are explained and a set of 

meaningful characteristics which are easy to interpret are 

derived.  In chapter three the measurement technique is 

evaluated by using numerical simulation (FEA) and 

practical experiments. The last chapter performs a rocking 

mode analysis on a headphone transducer to find the 

physical root causes and solve the problem in design and 

production processes.  
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Fig 1. Signal flow chart representing the modal model 

1. SUMMARY ON MODELING 

The model presented in [1], explains the signal flow from 

the voltage U at the terminals to the displacement XT(rc) at 

any point rc on the radiator’s surface Sc as illustrated in Fig 

1.  This model comprises three parallel branches 

representing the fundamental piston mode (n=0) and the 

two rocking modes (n=1,2) with the corresponding modal 

state variables xL = [x0 τ1  τ2]T. The voltage U is converted 

into the modal excitation signal (force F0) driving the 

fundamental resonator with the transfer function H0(s). 

The transversal displacement x0 at the output of the 

resonator represents the state of the fundamental mode. 

Multiplying the modal amplitude x0 with the mode shape 

Φ0 gives the transversal displacement X0(rc) on the surface 

of the radiator. For each rocking mode (n=1,2), the input 

voltage can be converted into the moments  µn,E, with E 

∈ {M,K,Bl}  generated by the imbalances of mass, 

stiffness and force factor, respectively.    

The total excitation signal En which is the sum of the three 

moments  
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drives the rocking resonators with the transfer function 

Hn(s) and produces the tilting angle τn. The tilting angle τn 



 

 

 

gives in combination with mode shape Φn the contribution 

of nth-order rocking mode to the total displacement XT(rc).  

Only the total displacement XT(rc) can be measured by 

laser vibrometry and is the basis for the estimation of the 

lumped parameters. The identified model reveals the 

imbalances and gives access to all the forces and all 

moments µn,E, with E ∈ {M,K,Bl} and the modal state 

variables x0, τ1, τ2.   

2. PARAMETER IDENTIFICATION 

The identification of the free parameters of the model 

requires a set of measurement points distributed on the 

diaphragm surface. The target is to extract the rigid body 

behavior of the driver exploiting the magnitude and phase 

of the displacement signal. Since the rocking mode is a low 

frequency mechanism, the frequency range needs to 

include enough frequency points in the frequency range 

fs/4 < f < 2fs with the fundamental resonance frequency fs 

of the transducer. The applied excitation voltage should be 

constant for all the excitation frequencies driving the 

loudspeaker in the linear operation range. In the future 

papers the effect of the imbalances of the nonlinear 

stiffness and force factor will be address.  

2.1 Measurement setup 

Theoretically, three measurement points are sufficient for 

describing the rotational and translational behavior of the 

diaphragm. In practice a large number of points is used 

(50-200) to ensure sufficient signal to noise ratio and to 

cope with optical errors. The length of the stimulus should 

be long enough to ensure sufficient frequency resolution to 

measure the peaky resonance curve caused by the high 

quality factor (Qn > 20) of the rocking modes. A typical 

scan performed with a triangulation laser can be 

accomplished in less than 15 minutes. A linear parameter 

measurement (LPM) provides the T/S parameters of the 

electromechanical model.    
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Fig 2. Measurement of the free parameters of the modal model 

2.2 Parameter Identification 

The identification scheme used for the estimation of the 

free model parameters is shown in Fig 2. The modal 

analysis generates the modal state variables xL = [x0 τ1  τ2]T 

based on laser scanning data x(rc). The modal model 

generates based on the linear lumped (T/S) parameters PTS 

representing the fundamental mode and initial values of 

the additional lumped parameters PR[0] describing the 

rocking modes (n=1,2) and estimated  state variables x’L = 

[x’0  τ’1  τ’2]T. The optimal parameters PR are determined 

iteratively by minimizing the error vector e= xL - x’L. The 

identified state x’L and parameters PR and PTS are the basis 

for the following transducer diagnostics. 

3. CHARACTERISTICS  

To simplify the interpretation of the state and parameter 

information additional characteristics are derived which 

reveal the root causes, the excitation of the modal 

resonators and the contribution to the displacement 

quantitatively.  

3.1 Root Causes 

The root causes of the rocking modes are small imbalance 

in the mass, stiffness and force factor distribution. This 

imbalance occurs if the center point of the distribution is 

not in the nodal cross point (pivot point) of the two rocking 

modes which is in the origin of the Cartesian coordinate 

system. The coordinates of the center of gravity can be 

expressed as  
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using the coupling parameters Δn,M with n=1,2 of the 

identified modal model and the total moving point mass 

Mms as introduced in [1].   

The center of the stiffness is located at 
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using the stiffness coupling Δn,K and the mechanical 

stiffness Kms.   

The center of the force factor is located at   
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using parameters Δn,Bl and the transducer force factor Bl. 

The distance  

   Bl}K,{M, E22  CECEE zyd  (5) 

between this center point and the origin shows the 

magnitude of the imbalance and the angle  
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reveals the direction of the imbalance whereas the constant 

γ0 considers the orientation of the scanning grid. These 

parameters are close descriptors of the physical root causes 

but they do not consider the excitation condition of the 



 

 

modal resonators which depends on the location of the 

resonance frequencies fn with n=1,2 of the rocking modes 

and fundamental resonance frequency fs of the piston 

mode, which determines the excitation moment.  

3.2  Relative Rocking Level RRLn,E  

To assess the relevance of the rocking behavior it is useful 

to analyze first the total displacement X(rc) on the 

radiator’s surface Sc and to compare the amplitude of the 

undesired rocking modes with the amplitude of the desired 

piston mode. The relative rocking level  

)()()( 0,, nnEnnEn fAALfAALfRRL   (7) 

describes the difference between the accumulated 

acceleration level [2] of the nth rocking mode AALn,E and 

the AAL0 of the fundamental mode. This measure can be 

applied to the total rocking mode considering all root 

causes (replacing subscript E by T) or to each contribution 

generated by the imbalance of mass, stiffness and force 

factor represented by symbol E ∈ {M,K,Bl}. A useful 

approximation of  Eq. (7) is  
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using the displacement Xn,E(fn, rc) of the rocking modes and 

the displacement X0(fn, rc)  at the point rc on the radiator’s 

surface SC. A value RRL which is larger than -5 dB 

indicates a significant rocking mode. 

3.3 Assessing the Modal Resonators 

The modal resonator generates based on excitation signal 

En with n=0,1,2 the modal state variables xL = [x0 τ1  τ2]T 

as shown in Fig 1. The resonators of the two rocking 

modes behave like a narrow band pass filter boosting the 

excitation signal En at the particular resonance frequency 

fn significantly. Although, the excitation En(f) at 

frequencies f  below and above the resonance frequencies 

fn is not relevant for the generation of critical rocking 

behavior the frequency response of  En(f) was the basis for 

the identification of the free model parameters.  In this 

section useful characteristics, which gives a deeper insight 

into the excitation process and the properties of the 

resonators are presented. 

3.3.1 Modal Force Ratio MFRn,E  

The excitation signal En generating the nth-rocking mode 

are transformed into the equivalent modal forces  

refnTn dEF /, 
 (9) 

using a reference distance dref which corresponds with the 

diameter of the radiator’s surface. Comparing those forces 

with the transversal force F0 of the fundamental mode give 

the total modal force ratio in percent:  
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Considering the moments µn,E  due to the imbalances 

mass, stiffness and force factor represented by subscript E 

∈ {M,K,Bl} gives the force component  

refEnEn dF /,,   (11) 

and the modal force ratio of component E: 
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3.3.2 Combined Force Ratio CFR   

Exploiting the orthogonal properties of the mode shapes 

the following approximation gives the magnitude of the 

combined total force considering all root causes 
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at the geometrical mean frequency 𝑓𝑚 = √𝑓1𝑓2 located 

between the two resonances.   

The total combined force ratio CFRT considering the 

contribution of all imbalances   
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compares the combined total force F’T with the piston 

mode force F0 at fm. 

Considering the contributions of mass, stiffness and force 

factor imbalance represented by subscript E ∈ {M,K,Bl} 

gives the force components    
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and the combined force ratio CFRE of component E: 
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The direction of the equivalent forces F’T and F’E can also 

described by angles βT and βE with E ∈ {M,K,Bl} 

calculated by a vectorial summation of the two modal 

forces.  

The angles βE of the force components are directly related 

to the angles γE defined by the coordinates of the center of 

mass, stiffness and force factor in Eq. (6). The combined 

force ratio has higher diagnostic value than the distance dE 

between center point and pivot point presented in Eq. (5) 

because the CFR also considers the particular excitation 

condition depending on the on location of the fundamental 

resonance f0 and the mean frequency fm.   

3.3.3 Relative Resonator Gain 

The transfer functions Hn(s) of the resonators with n=1,2 

depends on resonance frequency fn, relative gain Gn and 

loss factor ηn as described in detail in [1] the total modal 



 

 

 

force Fn,T and the total accumulated acceleration level  

AALn,T can be calculated as 
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this is a valuable characteristic to assess the behavior of 

each modal resonator with n=1,2 at the natural frequency 

fn. Clearly the transducer design is interested to keep the 

relative resonator gain as small as possible by maximizing 

the loss factor ηn, increasing the natural frequency of the 

rocking modes fn by making the rotational stiffness of the 

suspension in the direction of the tilting angles as high as 

possible and reducing the moment of inertia involved in 

the rocking modes. 

4. EVALUATION 

The new measurement technique has been evaluated by 

numerical simulations (FEA) and experiments on a 

multitude of real transducers using laser vibrometry. The 

distribution of mass, stiffness and force factor are changed 

systematically by applying known perturbations on virtual 

and real transducers. This case study also illustrates the 

diagnostic value of the new measurement technique. 

4.1 Numerical Evaluation  

A Finite Element Analysis (FEA) has been used to 

calculate the total displacement x(rc) on the surface of the 

radiator while considering a mass, stiffness or force factor 

imbalance. After identifying the model parameters, the 

combined force ratio (CFR) is calculated which indicates 

magnitude and direction of the excitation signal driving the 

modal resonator.  
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Fig 3. FE simulation of a rocking mode excited by a mass 

imbalance generated by additional lumped mass element (left), 

and the combined force ratio (right) revealing the total 

excitation (CFRT) and the contribution (CFRE) by the mass (M), 

stiffness (K) and force factor (Bl) imbalance 

4.1.1 Mass imbalance 

An additional mass element is placed at outside the pivot 

point at a position as depicted on the left-hand side of Fig 

3. The parameter identification reveals the center of 

gravity shifted by dM=0.3mm into the same direction at 

angle γM=240°. This imbalance generates a moment 

driving the first rocking resonator at the resonance 

frequency 300 Hz. The vector overlaid to the scanning grid 

on the right hand-side indicates the lighter side of the 

radiator which is exactly located on the opposite side of the 

center of gravity. The force ratio CFRM=1.6% generated 

by the mass imbalance (M) only dominates the total force 

ratio CFRT=1.6%.  
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Fig 4. FE simulation of a rocking mode excited by a stiffness 

imbalance generated by varying thickness of the surround area 

(left) and the combined force ratio (right) revealing the total 

excitation (CFRT) and the contribution (CFRE) by the mass (M), 

stiffness (K) and force factor (Bl) imbalance 

4.1.2 Stiffness imbalance 

A stiffness imbalance was generated by varying the 

thickness of the surround over the circumference as shown 

in the left-hand side of Fig. 4. The parameter identification 

reveals the center of stiffness shifted by the distance 

dK=1.07 and in the direction γK=300° from the pivot which 

agrees with the variation of the thickness. The vector 

displayed on the scanning grid on the right hand side of Fig 

4 shows the stiffer side of the distribution, which also 

agrees with perturbation. The length of the vector 

represents the magnitude of the combined force ratio CFRK 

=8.2.% which is the dominant contribution to the total 

force ratio CFRT.  
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Fig 5. FE simulation of a rocking mode excited by a force factor 

imbalance (left) and the combined force ratio (right) revealing 

the total excitation (CFRT) and the contribution (CFRE) by the 

mass (M), stiffness (K) and force factor (Bl) imbalance 

4.1.3 Force Factor Imbalance 

A force factor imbalance was simulated by increasing and 

reducing the force factor on opposite sections of the voice 

coil as shown on the left-hand side in Fig 5. The center of 

force factor distribution has been identified at the distance 

dBl=3.1mm and in the direction γBl =210° form the pivot 

point which agrees with introduced force factor imbalance. 

This vector on the left hand side represents the combined 

force ratio points into the same direction.  The component 

CFRBl =3.5% contributed by the force factor imbalance 

coincides with the total ratio CFRT indicating a dominant 

Bl imbalance.   

4.2 Experimental Evaluation  

In addition to FE simulations further experiments have 

been performed on real transducers modified by 

intentional perturbations. In order to ensure that the 

rocking mode is excited dominantly by the perturbation, 

the transducer was measured before and after each 

modification, but here only the results of the transducer 

will be presented. 
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Fig 6. Combined force ratio CFR plotted over scanning grid 

(right) reveals the direction and magnitude of the combined 

excitation force generated by a mass perturbation (left). 

4.2.1 Mass Perturbation 

A mass imbalance was experimentally realized by 

attaching a small amount of clay close to the surround at a 

position   shown on the left side in Fig 6. The rocking mode 

analysis reveals that this perturbation shifts the center of 

mass by dM=0.24mm to the same direction γM =121°. The 

mass imbalance (white circle) generates the dominant 

contribution CFRM=1.07% to the total the total force ratio 

(black circle) exciting primarily the first rocking mode. 

The direction of the combined excitation force agrees with 

the position of the perturbation and the identified center of 

gravity.   
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Fig 7. Combined force ratio CFR plotted over scanning grid 

(right) reveals the direction and magnitude of the combined 

excitation force generated by a force factor perturbation (left). 

4.2.2 Force Factor Perturbation 

A force factor imbalance was generated by attaching two 

arrays of axially polarized magnets on the back-plate as 

shown on the left-hand side of Fig 7. The rocking mode 

analysis shifts the center of force factor by distance 

dBl=1.69mm to the direction defined by angle γBl =76°. The 

vector representing the total combined force ratio CFR 

(black circle) pointing to the same direction as shown on 

the left hand side of Fig 7. The contribution CFRBl=2.0% 

generated by Bl imbalance (rhomb) is the dominant root 

More 

force 
Less 

force 

Direction of Bl 

imbalance   

210° 

Attached mass 

~120° 

Added Magnets  



 

 

 

cause which is increased by the contribution of mass 

(white circle) pointing to the same direction. The 

contribution of stiffness (square) is negligible. 

 

stiffer

CFRM CFRK CFRBl CFRT

C
F

R
E

 %

CFRE %

0°

90°

180°

270°

 

Fig 8. Combined force ratio CFR plotted over scanning grid 

(right) reveals the direction and magnitude of the combined 

excitation force generated by a stiffness perturbation (left). 

4.2.3 Stiffness perturbation 

A stiffness imbalance was generated by perforating a 

section of the surround by a pin without affecting 

significantly the mass distribution as shown on the left-

hand side of Fig 6. The rocking mode analysis shifts the 

center of stiffness by dK=1.02 mm to the direction defined 

by angle γK =143° which agrees with the direction of the 

perturbation. The right-hand side shows the stiffness 

imbalance (square) as the dominant contribution 

CFRK=0.16% to the total force ratio (black circle). The 

vector points to the center of stiffness and the harder side 

of the surround. A small mass imbalance (circle) 

generating a much smaller contribution CFRM=0.05% in 

perpendicular direction to the force generated by the 

stiffness imbalance.      

5. Transducer Diagnostics   

In the following section the rocking mode analysis will be 

applied to a transducer as used in headphones exhibiting 

visible rocking behavior in the laser scan. The modal 

analysis applied to the measured displacement is used to 

separate the rocking modes (n=1,2) from the fundamental 

mode (n=0) and to calculate the relative rocking level RRL 

in accordance with Eq. (7) shown in Table 1.   

 

Relative Rocking Level 

RRL(dB) 

Dominant 

(n=1) 

Second 

(n=2) 

Total contribution (T) RRL1,T = 5.4  RRL2,T = -12.9  

Mass Imbalance (M) RRL1,M = -8.6  RRL2,M = -18.4  

Stiffness Imbalance (K) RRL1,K = 1.4  RRL2,K = -17.7  

Force factor Imbalance 

(Bl) 

RRL1,Bl = -9.6  RRL2,Bl = -12.6  

Table 1. Relative Rocking  Level (RRL) of the first and second rocking 

modes and the contribution by each  root cause 

The first mode at the natural frequency f1=151 Hz has a 

total Relative Rocking Level RRL1,T =5.4 dB showing that 

the rocking mode generates an AAL which is higher than 

the desired piston mode. The rocking mode analysis 

reveals the contribution of the mass, stiffness and force 

factor imbalances. The dominant root cause is the stiffness 

imbalance (K) generating a contribution of RRL1,K =1.4 

dB. The contributions generated by mass and force factor 

imbalances are -10 dB lower in the first rocking mode. The 

second rocking mode at the natural frequency f2=129 Hz 

generates a much smaller value of the total RRL2,T =-12.9 

dB. The 2nd rocking mode is almost not visible in the 

optical animation of the laser scanning data. Here the 

component generated by the force factor imbalance (Bl) 

provides the largest contribution.   
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Fig 9. Accumulated acceleration level of the piston mode 

(AAL0), the total 2nd rocking rocking mode (AAL1,T) and the 

contributions (AAL1,E) from the imbalances E ∈ {M,K,Bl} versus 

frequency f 

Fig 9. shows the total accumulated acceleration level 

AAL1,T of the first rocking mode versus frequency. The 

solid curve calculated by modal analysis based on the 

scanning data coincides almost perfectly with the dashed 

curve predicted by the modal model. This diagram also 

shows the contribution of each root cause. The AAL1,K 

generated by the stiffness imbalance (K) represented as the 

thick dashed curve shows the highest value at low 

frequencies but decays rapidly at frequencies above the 

resonance frequency f1=151 Hz. The AAL1,M generated by 

the mass imbalance represented as the thin dashed curve 

stays constant at high frequencies but decays rapidly to 

lower frequencies. The frequency response of the AAL1,Bl 

generated by the force factor imbalance shows similar 
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slopes at very low and high frequencies as the responses of 

AAL1,K and AAL1,M, respectively. However, the force factor 

imbalance generates a unique dip in the AAL1,Bl response 

at the fundamental resonance frequency f0=80 Hz. Thus, 

the location of the rocking resonance frequencies fn with 

n=1,2 with respect to the fundamental resonance frequency 

f0 influences the relative rocking level RRL(fn). Assuming 

the imbalances of mass, stiffness and Bl would have the 

same center point then the stiffness would generate the 

lowest contribution RRLn,K to the total RRLn,T for 

resonance frequencies fn > f0. The mass imbalance would 

generate the smallest contribution RRLn,M at frequencies fn 

< f0 and Bl imbalance give the smallest contribution RRLn,Bl 

for fn = f0. With the assumption above the mass imbalance 

reduces the effect of the other contribution from stiffness 

and Bl imbalance at resonance frequencies fn > f0.  
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Fig 10. Accumulated acceleration level of the piston mode 

(AAL0) , the total 2nd rocking rocking mode (AAL2,T) and the 

contributions (AAL2,E) from the imbalances E ∈ {M,K,Bl}   

Fig 10. shows the accumulated acceleration level AAL2,T of 

the second rocking mode calculated by modal analysis 

based on measured displacement (thin solid line) and 

predicted by the modal model (thick solid line). Both 

curves agree at high AAL values where the measurement 

noise is negligible. The total AAL2,T of the second rocking 

mode reveals two peaks corresponding with the natural 

frequencies fn of the rocking resonators n=1,2. While the 

peak at the lower frequency f2=129 Hz corresponds with 

natural frequency of the 2nd mode, the peak at higher 

frequency f1=151 Hz is generated by coupling with the first 

mode (secondary excitation).  

 

 

Fig 11. Modal Force Ratio MFR1 describing the excitation of 

the first rocking mode of the headphone  

 

Fig 12. Excitation Ratio MFR2 describing the exciation of the 

second rocking mode of the headphone  

Fig 11 and Fig. 12 show the mode shapes of the first and 

second rocking mode where thin dashed lines indicate the 

nodal lines. The vector ending with the black circle 

represents the modal excitation ratio MFRn,T with n=1,2 

considering all root causes. The vectors ending with other 

symbols represent the contributions MFRn,E with E 

∈ {M,K,Bl} of the mass, stiffness and Bl imbalance.  

 

Modal Force Ratio  First mode 

(n=1) in % 

Second mode 

(n=2) in % 

Total (M,K,Bl) MFR1,T =2.9 MFR2,T =0.57 

Mass  (M)  MFR1,M =0.68 MFR2,M =-0.24 

Stiffness (K)  MFR1,K = 1.77 MFR2,K =-0.29 

Force factor (Bl) MFR1,BL = 0.44 MFR2,Bl =0.53 
Table 2. Total force ratio and the contributions from mass, stiffness and 

Bl imbalances.  

Table 2 shows the values of the modal force ratios where 

the magnitude corresponds with the length of the vector 

and the sign with the direction of the vectors in Fig 11 and 

Fig. 12. The positive values MFR1,E of all components E 

∈ {M,K,Bl} indicate that all imbalances contribute 

constructively to the first rocking mode.  
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Fig 13. Mode shape of the first rocking mode (left) and the 

vectors representing the combined force ratio and the 

contribution by mass, stiffness and force (right)  

Imbalance 

 

Characteristics Value 

Mass (M) CFRM 0.83 % 

 βM 345.9° 

Stiffness (K) CFRK 2.22 % 

 βK 14.6° 

Force factor (Bl) CFRBl 0.71 % 

 βBl 320.8° 

Total (M,K,Bl) CFRT 3.49% 

 βT 1.5° 

Table 3. Combined force ratio CFRE and angle βE indicating the 

magnitude and direction of the excitation of the rocking modes by the 

imbalance E 

The total combined force ratios CFRT and the angle βT 

presented in Table 3 show the magnitude and direction of 

the force exciting both rocking resonators. The directions 

of the vectors representing the contributions CFRE of each 

imbalance E ∈ {M,K,Bl,T} are closely related to the center 

of gravity, stiffness and force factor as shown in Table 4.  

Center of 

 

Coordinates Value 

Gravity (M) dM 0.08 mm 

 γM 168° 

Stiffness (K) dK 0.73 mm 

 γK 17.54° 

Force factor (Bl) dBl 0.9 mm 

 γBl 320° 
Table 4.Polar coordinates of the center of gravity (M), stiffness (K) and 

force factor (Bl) identified by the modal modelling of the headphone 

transducer.  

However, the combined force ratio has a higher diagnostic 

value then the coordinates dE and γE of the center points 

because this characteristic also considers the influence of 

the resonance frequencies fn with n=0,1,2 on the excitation 

of the modal resonators.  

The CFR values in percent are presented as vectors on the 

scanning grid in Fig 13. The stiffness imbalance generates 

the largest contribution CFRK (square) to the total CFRT 

(black circle) located at angle βT close to the angle α1 of 

the first mode. The force factor imbalance (rhomb) is 

located at angle βBl which also excites the second mode 

represented by angle α2. The angle βK and βBl of the vectors 

of the contribution are almost identical with the angles γK 

and γBl of the center point of the stiffness and Bl 

distribution, respectively. The angles of the mass 

imbalance are related by  βM ≈ γM+180° due to the 

particular excitation condition of the mass imbalance for 

frequencies fn>f0 with n=1,2.    

 

Modal resonator 

(n=1,2) 

First mode 

(n=1) 

Second mode 

(n=2) 

Resonance frequency  f1 = 151 Hz f2 = 129 Hz 

Relative gain at fn   RG1= 36 dB RG2= 31.6 dB 

Loss factor  η1 = 0.016 η2= 0.014 

Quality factor   Q1 = 30.2 Q2 = 34.7 
Table 5. Characteristics of the rocking resonators 

After investigating the excitation condition the 

characteristics of the rocking resonators given in Table 5 

are discussed in greater detail. The high quality factors Qn 

of the rocking modes n=1,2 generate a high gain RGn and 

a peaky shape of the rocking resonance as shown in Fig 9 

and Fig 10. The mechanical losses damping the rocking 

modes are much smaller than the mechanical losses 

damping the fundamental piston mode. The tilting of the 

diaphragm pushes the air from one side to the other side of 

the rotational axis while the piston mode presses the air 

through the magnetic gap where turbulences generate 

significant losses. Although the headphone transducer uses 

an axial-symmetrical (round) diaphragm, the litz wires and 

irregularities in the mass and stiffness distribution generate 

a significant difference between the two resonance 

frequencies f1 and f2.  

In order to separate systematic and random root causes it 

is strongly recommended to scan a second unit of the same 

transducer type. If the rocking mode analysis shows a 

dominant stiffness imbalance at the same location, the 

constructional causes for the imbalances should be 

searched in the design and production process. Random 

problems may be caused by varying properties (thickness) 

of the raw material used for the diaphragms and 

suspension. All activities should be focused on removing 

the dominant imbalance, in the particular example the 

stiffness distribution. Increasing the rotational stiffness 

would also reduce the relative rocking level generated by 

all three imbalances because the higher rocking resonance 

frequencies (f1 > fs) impairs the excitation condition for a 

stiffness imbalance. However, increasing the rotational 

stiffness in headphone and micro-speakers will also 

increase the translational stiffness Kms and the fundamental 

resonance frequency fs. In woofers a larger rotational 

stiffness can be realized by increasing the distance 

between spider and surround while keeping the total 

stiffness Kms constant. To reduce the quality factor of the 

rocking modes the loss factor in the material used for 

suspension and diaphragm should be increased.   



 

 

6. CONCLUSIONS 

The new measurement technique analyses the excitation 

and vibration of rocking modes based on an extended 

model using lumped parameters in the modal space. The 

free parameters of the model are identified for the 

particular transducer based on measured displacement 

easily accessible by laser vibrometry. Further 

characteristics simplify the interpretation of the basic 

model parameters and give a deeper insight into the 

excitation of the modal resonators. This is the basis to 

localize and assess the magnitude of imbalance which is 

the difference (in mm) between the center point in the 

mass, stiffness and force factor distribution and the cross 

point between the nodal lines (pivot point). Although this 

difference is the actual root cause of the rocking behavior 

the amplitude of the rocking mode depends also on 

excitation conditions and the gain of the rocking 

resonators. Due to the high quality factor of the rocking 

resonators only a very small asymmetrical force is required 

(which is usually a few percent of the transversal force) to 

generate a critical rocking behavior having more energy 

than the desired piston mode. Assessing the relative 

rocking level RRL and identifying the imbalances is a 

convenient way to keep voice coil rubbing under control 

and to avoid impulsive distortion impairing the quality of 

the reproduced sound.  
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