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Electromagnetic transducers using a balanced armature play an important role in hearing aids 

and in-ear headphones because they generate required sound output at high efficiency. This 

paper investigates the transfer behavior at high amplitudes and develops a lumped parameter 

model of this transducer that considers the nonlinearities caused by the geometry and material 

properties. This model is a basis for optimal transducer design, adjusting the armature in 

production and actively cancelling the nonlinear distortion through nonlinear, adaptive control. 

 

I. INTRODUCTION 

Most loudspeakers, headphones and other electro-acoustical devices use an electro-dynamical 

transducer with a moving voice coil in a static magnetic field. Models have been developed for 

this kind of transducer which provide sufficient accuracy for measurement and control 

application 1. 

Electro-magnetic transducers use a coil at a fixed position and a moving armature connected 

via a driving pin to a diaphragm 2. This kind of transducer has some desired properties (e.g. 

high efficiency) that are not found in electro-dynamical transducers 3. The nonlinearities 

inherent in the electro-magnetic principle are a source of signal distortion 4. This disadvantage 

can be partly reduced by using an armature balanced in a magnetic field generated by additional 

magnets as shown in Figure 1.  

An accurate model of the balanced armature transducer is required to get a deeper insight into 

the physical causes and to predict the large signal performance for any input signal. Hunt 2 

developed a nonlinear model that describes the electro-magnetic transducer by an electrical 

equivalent circuit comprising lumped elements. The inherent nonlinearities are represented by 

inductance L(ξ), transduction factor T(ξ) and magnetic stiffness Kmag(ξ) depending on the 

displacement ξ of the armature. All parameters are derived from the geometry of an ideal 

transducer having a magnetic material without saturation and hysteresis. This paper 

investigates the validity of those assumptions and presents an extended model that considers 

the dominant nonlinearities found in real BA-transducers.   

 
1 This paper is an amended version of reference 10 with small changes in equations (5) and (24).  
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Figure 1.  Sectional view of a balanced-armature transducer 

II. GEOMETRICAL NONLINEARITY 

The derivation of the theory is illustrated on the balanced-armature device shown in Figure 1. 

An armature with a cross sectional area Aa is placed between two magnets, generating an upper 

and lower gap which are closed by a rear air on path. A coil placed at a fixed position generates 

a magneto-motive force Ni in the armature depending on the number N of wire turns and input 

current i at the terminals. The armature is connected via a driving rod to a diaphragm. The 

diaphragm and an optional mechanical suspension determine the initial rest position of the 

armature x=0.  
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Figure 2. Simplified magnetic circuit of the balanced-armature transducer considering geometrical nonlinearity only 

 

The conventional model, as described by F.V. Hunt 2 and J. Jensen 6 , is based on the simplified 

magnetic circuit shown in  

Figure 2.tif. It is assumed that the two magnets have the same magneto-motive force 

1 2mF F F= =  (1) 

 

and the internal reluctance of the magnet is represented by the same value in the upper and 

lower path  
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using the permeability μ0 of air, equivalent air gap length DM representing the permanent 

magnet with cross sectional area AM, geometrical length lM and relative permeability μr. It is 

assumed that the area of the magnet equals the area of the air gap:  

m gA A A= =
 

(3) 

 

The point x=0 is defined as initial armature rest position without applying a magneto-motive 

force (Fm=0) or an input current (i=0). It is also assumed that this point x=0 is equal to the 

symmetry point xs=0, which generates the same length D of the upper and lower air gap.  After 

magnetizing the two magnets (Fm>0), the armature is moved to the equilibrium position xe. The 

conventional modeling 2 assumes that the equilibrium position also equals the initial rest 

position xe=xs=0. An input current i≠0 causes an additional displacement ξ=x-xe of the armature 

which generates the desired acoustical output.  

 

Under those assumptions, the magnet fluxes 1 and 2 in the upper and lower path, respectively, 

can be described by 
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using the nonlinear reluctances R1(ξ) and R2(ξ) representing the upper and lower air gap, 

respectively, which can be calculated as 
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with the effective air gap length Deff considering the magnet length Dm.   
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Figure 3. Equivalent circuit of the conventional modeling considering the geometrical nonlinearity at the equilibrium point xe  

 

Following the derivation described in greater detail by Jensen 6 leads to the equivalent circuit 

in Figure 3. corresponding to a voltage equation   

( )( ) ( ) ( , )e d

di d
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dt dt


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(8) 

 

 

 



4 

 

and a force equation 
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using the inverse Laplace transformation L-1{} and the convolution operator * to consider the 

mechanical impedance:  
(0)
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K
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s
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(10) 

 

 

 

The linear lumped parameters of the transducer are an electrical DC coil resistance Re, a moving 

mass Mms, a mechanical resistance Rms representing the losses in the mechanical system and 

the impedance Zload(s) of the mechanic and acoustic load.  

The nonlinear parameters comprise an inductance depending on displacement   
22
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a transduction factor coupling the electrical with mechanical side expressed as 
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a second transduction factor depending on displacement and current 
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a magnetic stiffness expressed  
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and the stiffness K(ξ) of the mechanical suspension, which is also found in moving coil 

transducers.  

 

The displacement varying reluctances R1(ξ) and R2(ξ) generate a characteristic term Deff
2 - ξ2 in 

the denominator of Eqs. (11) - (14) that generates a symmetrical increase of the nonlinear 

parameters for positive and negative displacement.  
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Figure 4. Normalized coil inductance L(ξ)/L(ξ=0) versus normalized displacement ξ/D based on the conventional model that 

only considers the geometrical nonlinearity for different ratios α= Dm/D between air gap length D and equivalent air gap 

length of the magnet Dm (Jensen 6 ). 
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A.Insufficiencies of the Geometrical Model 

Klippel 5 and Jensen 6 found a significant discrepancy between the predicted behavior based 

on the conventional model and the behavior of real BA-transducers.  For example, Figure 4. 

shows an increase of the normalized inductance L(ξ)/L(ξ=0) for any displacement ξ as 

calculated by Jensen 6. The geometrical nonlinearity becomes stronger for a smaller ratio α 

corresponding to a smaller reluctance Rm in the magnets. 
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Figure 5. Normalized coil inductance L(ξ)/L(ξ=0) versus normalized DC displacement ξ/D of the clamped armature 

derived from electrical input impedance measured at selected frequencies (Jensen 6). 

 

However, in practical measurements of typical BA-transducers, Jensen 6 found a significant 

decrease of the inductance as shown in Figure 5.tif, which is the exact opposite of the predicted 

behavior in Figure 4.tif. Klippel 5  performed similar experiments on BA-transducers in which 

the armature was clamped at a fixed displacement ξ and excited with a broadband stimulus 

containing a variable DC component and found that the inductance L(ξ,i) decreases not only 

with displacement but also with current i. Those observations are indications of the saturation 

of the armature and other soft iron material in the magnetic path. Although those facts have not 

been incorporated in the conventional modeling, it is known in the industry and already used 

in practical design. Thompsen 7 disclosed small modifications on the armature to use the 

nonlinear saturation for compensating the geometrical nonlinearity and reducing the distortion 

in the acoustical output signal.  

 

There are further shortcomings of the conventional model: The assumption xe=xs=0 generates 

a symmetrical curve shape in the inductance L(ξ), as shown in Figure 4., that can only explain 

the generation of 3rd-order and other odd-order harmonic or intermodulation distortion 4. Real 

transducers generate 2nd-order distortion that is related to asymmetries in the nonlinear curve 

shape, which is also clearly visible in the example shown in Figure 5.tif. Considering an 

asymmetrical curve shape of the nonlinear motor and suspension parameters shown in Figure 

3. requires a reliable theory for predicting the equilibrium point xe, which can be different from 

the initial rest position x=0 of the suspension without magnets and the symmetry point xs. In 

other words, a model is required that describes the absolute position x of the armature.  

 

Another objective is to increase the model power, achieving greater accuracy while keeping 

the model complexity as small as possible. This can be accomplished by useful approximations 

and detailed discussions of their validity.   
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Figure 6. Magnetic circuit of the balanced-armature transducer using a nonlinear reluctance Ra(a) to consider the 

saturation of the soft iron armature material. 

III. MODEL WITH SATURATION 

The decrease of the measured inductance L(ξ) with rising displacement ξ can be explained by 

a nonlinear reluctance Ra(a) representing the armature in the magnetic circuit as shown in 

Figure 6. depending on the magnetic flux a expressed as:  

1 2a  = −
 

(15) 

 

Assuming that the two magnets are generating the same magneto-motive force Fm and have the 

same internal magnetic reluctance Rm as introduced in section II, the fluxes 1 and 2 in the 

upper and lower air gap, respectively, can be expressed as follows: 
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The reluctances in the denominator of Eqs. (16) and (17)  can be modeled as 
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(19) 

 

 

 

with the initial rest position x=0 and the symmetry point xs defined as the position where 

R1(x)=R2(x) for i=0. 
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According to Eq. (15) the flux in the armature can be calculated as  
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with the nonlinear flux function 
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depending on the armature position x and the input current i.  

 

The flux function fx(x,i) is always positive and becomes unity for x=xs and vanishing current i. 

The first nonlinear term in the denominator in Eq. (21) represents the geometrical nonlinearity 

of the transducer and generates high values of fx(x,i) when the distance |x-xs| approaches Deff 

and the reluctance Ra(a) is low. The second nonlinear term in the denominator represents the 

saturation and becomes dominant in most BA-transducers 
2
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and reduces the value of the flux function for rising flux a.  
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Figure 7. Advanced lumped parameter model of the BA-transducer considering the geometrical nonlinearity as 

function of the absolute position x and the saturation of the armature  

 

A.Electrical Part 

The electrical mesh on the left-hand side of the equivalent circuit in Figure 7. corresponds to  
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comprising nonlinear inductance clamped at position x 
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with linear inductance parameter Ls measured with small current i and an armature clamped at 

the symmetry point xs expressed as 
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and the electro-magnetic transduction factor 
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with a motor characteristic: 

m

eff

F

ND
 =

 

(27) 

 
 

 

The approximations in Eqs. (24) and (26)  are useful for modelling BA-transducers with 

nonlinear saturation because the partial derivative ∂fx(x,i)/∂x decreases with rising distance (x-

xs) and rising current i. If the saturation is negligible, the exact solution in Eqs. (24) and (26) 

corresponds with the derivation presented in section II. 

 

B. Mechanical Driving Force 

The total driving force generated at the armature due to the fluxes 1 and 2 in the upper and 

lower air gap can be calculated as: 
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The sum of the fluxes 1+2 in both air gaps can be expressed by the following equation: 
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Using Eq. (20) to replace the term 
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in Eq. (29) gives  
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in which the first term is independent of current and armature position. It is usually dominant 

in BA-transducers with saturation as discussed already in section A.  

 

Inserting Eqs. (31) and (20) in Eq. (28) gives the total driving force expressed as 
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using transduction factor Tx(x,i) introduced in Eq. (26).  

 

The first term in Eq. (32) can be interpreted as a restoring force of a magnetic stiffness which 

can be approximated as 
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under the condition that the saturation generates a falling flux function fx(x,i) for rising 

distances |x-xs|. Under the same condition, the transduction coefficient Tm,F can be 

approximated as 
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and the second current dependent transduction coefficient Tm,i becomes negligible:  
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IV. INTERPRETATION 

The extended model represented by an equivalent circuit shown in Figure 7. uses the same 

elements as in the conventional model in Figure 3. The nonlinear elements inductance Lx(x,i), 

transduction factor Tx(x,i) and magnetic stiffness K𝜙x(x,i) depend via the same flux function 

fx(x,i) on the input current i and position x. Considering the approximations for the nonlinear 

parameters, the voltage equation can be expressed as 
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and force equation becomes: 
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Thus, the flux function fx(x,i) and the mechanical stiffness K(x) are the dominant nonlinearities 

in BA-transducers. 

 

A.Nonlinear Flux Function 

The flux function fx(x,i) can be approximated by a series expansion 
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with the coefficients sk describing the saturation of the magnetic material and the parameter sx 

describing the dependency on armature position x. The first nonlinear term in the denominator 

represents the geometrical nonlinearity of the transducer and generates high values of fx(x,i) 

when x-xs approaches ±D and the saturation is negligible (sk≈0 for all k).   

 

The second nonlinear term in the denominator represents the saturation and becomes dominant 

in most transducers.  If the parameter sx is high, the saturation in the armature can partly 

compensate the effect of the geometrical nonlinearity in the first nonlinear term of the 

denominator.  

 

B.Symmetry Point 

If the magneto-motive forces of the two magnets are identical, as assumed in section III, the 

symmetry point xs corresponds to the armature position in which the distance to the upper and 

lower magnets is equal. At this point the flux function in Eq. (38) becomes the maximum value 

fx(x=xs, i=0)=1 and shows a symmetrical decay for positive and negative displacement if the 

input current is zero. However, the symmetry point xs in Eq. (38) can also be used for 

representing other asymmetries in the magnetic circuit such as different size and magnetization 

of the two magnets.  

 

C.Equilibrium Rest Position 

The armature rest position xe corresponds to the equilibrium between the mechanical restoring 

force of the suspension and the electro-magnetic attraction force   
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assuming that load impedance Zload(0)=0 vanishes at low frequencies and the input current i=0.  

 

D.Offset from Symmetry Point 

If the armature rest position xe is identical with the symmetry point xs, the BA-transducer has 

the highest efficiency and generates minimum 2nd-, 4th and other even-order harmonic 

distortion. The offset xoff = xe – xs is a meaningful characteristic for adjusting the equilibrium 

rest position xe.      
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Figure 8. Equivalent circuit of the extended model considering the displacement ξ from the equilibrium position xe 

 

V. ARMATURE DISPLACEMENT 

The displacement ξ=x-xe of the armature from the equilibrium rest position xe is the most 

important internal state variable because it that generates both the acoustical output and the 

back EMF at the terminals via velocity.  

 

Therefore, it is useful in practice to exchange the position x in Eqs. (40) and (41) by the 

displacement ξ, giving the voltage equation  

( , ) ( , )e

di d
u R i L i T i

dt dt


 = + +

 

(40) 

 
 

 

and force equation 

( )

 1

( , ) ( ) ( )

( , )

L ( , )

e e

m

T i i K x K x

K i

Z s s



  

 

 −

= + −

−

+ 
 

(41) 

 

 

 

 

corresponding to the equivalent circuit shown in Figure 8. The nonlinear inductance can be 

expressed as 
( )( , ) ,L i Lf i =

 (42) 

 

using the small signal value of the inductance at the equilibrium position xe 

( )
( )

( , 0) ( , 0)

, 0

0, 0

x e x s off

s x s off

s

L L x i L x x i

L f x x i

L f i 

= = = + =

= + =

= = =
 

(43) 

 

 

 

and the flux function fξ (ξ,i) depending on displacement ξ and current i: 
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2

1

1
( , )

1

k
K

off off

k x

k

f i
x x

s i s
D D

 
 

=

=
− −   

− + +   
   


 

(44) 

 

 

 

The mechanical stiffness of the mechanical suspension developed into a power series is 

1

( )
K

k

e ms k

k

K x K k 
=

+ = +
 

(45) 

 
 

 
 

with the linear stiffness parameter Kms.  

 

The nonlinear electro-magnetic transduction factor can be expressed as 

( )( , ) ,T i Tf i =
 

(46) 

 
 

 

with linear transduction factor T at the equilibrium position: 
( )( , 0) 0, 0x eT T x i Lf i = = = = =

 (47) 

 
 

 

The magnetic stiffness becomes 
( )( , ) ,K i K f i   =

 (48) 

 
 

 

using the small signal value K𝜙 at equilibrium position xe: 
( )2( , 0) 0, 0x eK K x i Lf i   = = = − = =

 (49) 

 
 

 

A.Free Model Parameters 

The nonlinear model describing the armature displacement in section V uses a minimum 

number of free parameters summarized in 

 lin nlin

lin mag sus

=

 =  

P P P

P P P
 

(50) 

comprising linear parameters valid at small amplitudes i≈0 and ξ≈0 

 lin e ms e ms msR M L R K=P
 

(51) 
 

 

and nonlinear parameters Pnlin which can be separated into parameters of the magnetic circuit   

1 ...mag off x eff Kx s D s s =  P
 

(52) 
 

 

and parameters of the mechanic or acoustic suspension (equivalent air stiffness in a sealed 

enclosure):   

 Ksus kk ...1=P
 

(53) 

 

 

The linear parameters Plin can be identified at small amplitudes based on the electrical 

impedance Ze(f) using conventional perturbation techniques (e.g. with and without added 

mass), laser vibrometry for measuring displacement or other time derivates. The parameters 

resistance Re, moving mass Mms, inductance Le, mechanical resistance Rms and mechanical 

stiffness Kms are also found in electro-dynamical transducers. The parameter λ is unique in BA-

transducers and describes the relationship between inductance L and transduction parameter T.   

The nonlinear suspension parameters Psus can be measured by static or dynamic measurement 

techniques defined in the IEC standard 62457 8.  

 

The nonlinear magnetic parameters Pmag define the flux function fξ(ξ,i) which generates a 

similar nonlinear curve shape in the inductance L(ξ,i), transduction factor T(ξ,i) and magnetic 

stiffness K𝜙(ξ,i). Based on the theory developed in this paper, a system identification technique 
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as defined in IEC standard 62458 9 can also be developed for those parameters. The parameters 

P have a high diagnostic value for assessing design choices during the development process. 

The information is also useful for manufacturing and quality control. The offset xoff=xs-xe, for 

example, is a meaningful characteristic for adjusting an armature’s equilibrium position xe.     

VI. CONCLUSIONS 

The paper presented a nonlinear model of the balanced armature transducer that considers the 

geometry and the material properties of the magnetic system. The new model uses the 

conventional theory as a starting point but additionally considers the saturation in soft iron 

parts and asymmetries in the nonlinear parameter shape caused by an offset in the armature rest 

position, different magnetization of the two magnets and other physical causes. This new model 

is the basis for numerical simulations to predict fundamental response, armature position, 

maximum output (e.g. SPLmax), the even- and odd-order harmonic and intermodulation 

distortion and to assess the stability of the BA-transducer. However, those simulations and 

investigations on design choices need accurate input parameters, which can be provided for 

virtual design choices by finite element analysis (FEA) or real transducers by system 

identification techniques.  

 

The accuracy of the model can be evaluated by comparing measured transfer functions and 

distortion data (e.g. THD) with predicted values. The model can be further improved by 

introducing additional parameters describing the losses in the inductance, in the mechanical 

suspension and in the air flow at the outlet in the front volume.  However, a model with 

minimum complexity but sufficient accuracy is preferred for designing nonlinear control 

systems for BA-transducers.  
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